ترغب بنشر مسار تعليمي؟ اضغط هنا

A t by n random matrix A is formed by sampling n independent random column vectors, each containing t components. The random Gram matrix of size n, G_n, contains the dot products between all pairs of column vectors in the randomly generated matrix A; that is, G_n = transpose(A) A. The matrix G_n has characteristic roots coinciding with the singular values of A. Furthermore, the sequences det(G_i) and per(G_i) (for i = 0, 1, ..., n) are factors that comprise the expected coefficients of the characteristic and permanental polynomials of G_n. We prove theorems that relate the generating functions and recursions for the traces of matrix powers, expected characteristic coefficients, expected determinants E(det(G_n)), and expected permanents E(per(G_n)) in terms of each other. Using the derived recursions, we exhibit the efficient computation of the expected determinant and expected permanent of a random Gram matrix G_n, formed according to any underlying distribution. These theoretical results may be used both to speed up numerical algorithms and to investigate the numerical properties of the expected characteristic and permanental coefficients of any matrix comprised of independently sampled columns.
We define the notion of asymptotically free for locally restricted compositions, which means roughly that large parts can often be replaced by any larger parts. Two well-known examples are Carlitz and alternating compositions. We show that large part s have asymptotically geometric distributions. This leads to asymptotically independent Poisson variables for numbers of various large parts. Based on this we obtain asymptotic formulas for the probability of being gap free and for the expected values of the largest part, number of distinct parts and number of parts of multiplicity k, all accurate to o(1).
Let m,n be positive integers. Define T(m,n) to be the transportation polytope consisting of the m x n non-negative real matrices whose rows each sum to 1 and whose columns each sum to m/n. The special case B(n)=T(n,n) is the much-studied Birkhoff-von Neumann polytope of doubly-stochastic matrices. Using a recent asymptotic enumeration of non-negative integer matrices (Canfield and McKay, 2007), we determine the asymptotic volume of T(m,n) as n goes to infinity, with m=m(n) such that m/n neither decreases nor increases too quickly. In particular, we give an asymptotic formula for the volume of B(n).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا