ترغب بنشر مسار تعليمي؟ اضغط هنا

Employing a local formula for the electron-electron interaction energy, we derive a self-consistent approximation for the total energy of a general $N$-electron system. Our scheme works as a local variant of the Thomas-Fermi approximation and yields the total energy and density as a function of the external potential, the number of electrons, and the chemical potential determined upon normalization. Our tests for Hookes atoms, jellium, and model atoms up to $sim 1000$ electrons show that reasonable total energies can be obtained with almost a negligible computational cost. The results are also consistent in the important large-$N$ limit.
We present theory and calculations for coherent high-fidelity quantum control of many-particle states in semiconductor quantum wells. We show that coupling a two-electron double quantum dot to a terahertz optical source enables targeted excitations t hat are one to two orders of magnitude faster and significantly more accurate than those obtained with electric gates. The optical fields subject to physical constraints are obtained through quantum optimal control theory that we apply in conjunction with the numerically exact solution of the time-dependent Schrodinger equation. Our ability to coherently control arbitrary two-electron states, and to maximize the entanglement, opens up further perspectives in solid-state quantum information.
95 - E. Rasanen , E. J. Heller 2012
Increasing fidelity is the ultimate challenge of quantum information technology. In addition to decoherence and dissipation, fidelity is affected by internal imperfections such as impurities in the system. Here we show that the quality of quantum rev ival, i.e., periodic recurrence in the time evolution, can be restored almost completely by coupling the distorted system to an external field obtained from quantum optimal control theory. We demonstrate the procedure with wave-packet calculations in both one- and two-dimensional quantum wells, and analyze the required physical characteristics of the control field. Our results generally show that the inherent dynamics of a quantum system can be idealized at an extremely low cost.
We derive a self-consistent local variant of the Thomas-Fermi approximation for (quasi-)two-dimensional (2D) systems by localizing the Hartree term. The scheme results in an explicit orbital-free representation of the electron density and energy in t erms of the external potential, the number of electrons, and the chemical potential determined upon normalization. We test the method over a variety 2D nanostructures by comparing to the Kohn-Sham 2D-LDA calculations up to 600 electrons. Accurate results are obtained in view of the negligible computational cost. We also assess a local upper bound for the Hartree energy.
Accurate treatment of the electronic correlation in inhomogeneous electronic systems, combined with the ability to capture the correlation energy of the homogeneous electron gas, allows to reach high predictive power in the application of density-fun ctional theory. For two-dimensional systems we can achieve this goal by generalizing our previous approximation [Phys. Rev. B 79, 085316 (2009)] to a parameter-free form, which reproduces the correlation energy of the homogeneous gas while preserving the ability to deal with inhomogeneous systems. The resulting functional is shown to be very accurate for finite systems with an arbitrary number of electrons with respect to numerically exact reference data.
81 - M. C. Rogge , E. Rasanen , 2010
The electronic states of lateral many electron quantum dots in high magnetic fields are analyzed in terms of energy and spin. In a regime with two Landau levels in the dot, several Coulomb blockade peaks are measured. A zig-zag pattern is found as it is known from the Fock-Darwin spectrum. However, only data from Landau level 0 show the typical spin-induced bimodality, whereas features from Landau level 1 cannot be explained with the Fock-Darwin picture. Instead, by including the interaction effects within spin-density-functional theory a good agreement between experiment and theory is obtained. The absence of bimodality on Landau level 1 is found to be due to strong spin polarization.
We study the properties of the lower bound on the exchange-correlation energy in two dimensions. First we review the derivation of the bound and show how it can be written in a simple density-functional form. This form allows an explicit determinatio n of the prefactor of the bound and testing its tightness. Next we focus on finite two-dimensional systems and examine how their distance from the bound depends on the system geometry. The results for the high-density limit suggest that a finite system that comes as close as possible to the ultimate bound on the exchange-correlation energy has circular geometry and a weak confining potential with a negative curvature.
Bounds on the exchange-correlation energy of many-electron systems are derived and tested. By using universal scaling properties of the electron-electron interaction, we obtain the exponent of the bounds in three, two, one, and quasi-one dimensions. From the properties of the electron gas in the dilute regime, the tightest estimate to date is given for the numerical prefactor of the bound, which is crucial in practical applications. Numerical tests on various low-dimensional systems are in line with the bounds obtained, and give evidence of an interesting dimensional crossover between two and one dimensions.
Two-dimensional semiconductor quantum dots are studied in the the filling-factor range 2<v<3. We find both theoretical and experimental evidence of a collective many-body phenomenon, where a fraction of the trapped electrons form an incompressible sp in-droplet on the highest occupied Landau level. The phenomenon occurs only when the number of electrons in the quantum dot is larger than ~30. We find the onset of the spin-droplet regime at v=5/2. This proposes a finite-geometry alternative to the Moore-Read-type Pfaffian state of the bulk two-dimensional electron gas. Hence, the spin-droplet formation may be related to the observed fragility of the v=5/2 quantum Hall state in narrow quantum point contacts.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا