ترغب بنشر مسار تعليمي؟ اضغط هنا

We use a combination of deep Chandra X-ray observations and radio continuum imaging to investigate the origin and current state of the intra-group medium in the spiral-rich compact group HCG 16. We confirm the presence of a faint ($L_{X,{rm bolo}}$=1 .87$^{+1.03}_{-0.66}$$times$10$^{41}$ erg/s), low temperature (0.30$^{+0.07}_{-0.05}$ keV) intra-group medium (IGM) extending throughout the ACIS-S3 field of view, with a ridge linking the four original group members and extending to the southeast, as suggested by previous Rosat and XMM-Newton observations. This ridge contains 6.6$^{+3.9}_{-3.3}$$times$10$^9$ solar masses of hot gas and is at least partly coincident with a large-scale HI tidal filament, indicating that the IGM in the inner part of the group is highly multi-phase. We present evidence that the group is not yet virialised, and show that gas has probably been transported from the starburst winds of NGC 838 and NGC 839 into the surrounding IGM. Considering the possible origin of the IGM, we argue that material ejected by galactic winds may have played a significant role, contributing 20-40% of the observed hot gas in the system.
We present new, deep Chandra X-ray and Giant Metrewave Radio Telescope 610~MHz observations of the spiral-galaxy-rich compact group HCG 16, which we use to examine nuclear activity, star formation and the high luminosity X-ray binary populations in t he major galaxies. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify a previously unrecognized nuclear source in NGC 838. All three nuclei are variable on timescales of months to years, and for NGC 833 and NGC 835 this is most likely caused by changes in accretion rate. The deep Chandra observations allow us to detect for the first time an Fe-K$alpha$ emission line in the spectrum of the Seyfert 2 nucleus of NGC 835. We find that NGC 838 and NGC 839 are both starburst-dominated systems, with only weak nuclear activity, in agreement with previous optical studies. We estimate the star formation rates in the two galaxies from their X-ray and radio emission, and compare these results with estimates from the infra-red and ultra-violet bands to confirm that star formation in both galaxies is probably declining after galaxy-wide starbursts were triggered ~400-500 Myr ago. We examine the physical properties of their galactic superwinds, and find that both have temperatures of ~0.8 keV. We also examine the X-ray and radio properties of NGC 848, the fifth largest galaxy in the group, and show that it is dominated by emission from its starburst.
The radio source 3C 270, hosted by NGC 4261, is the brightest known example of counterjet X-ray emission from a low-power radio galaxy. We report on the X-ray emission of the jet and counterjet from 130 ks of Chandra data. We argue that the X-ray emi ssion is synchrotron radiation and that the internal properties of the jet and counterjet are remarkably similar. We find a smooth connection in X-ray hardness and X-ray to radio ratio between the jet and one of the X-ray components within the core spectrum. We observe wedge-like depressions in diffuse X-ray surface brightness surrounding the jets, and interpret them as regions where an aged population of electrons provides pressure to balance the interstellar medium of NGC 4261. About 20% of the mass of the interstellar medium has been displaced by the radio source. Treating 3C 270 as a twin-jet system, we find an interesting agreement between the ratio of jet-to-counterjet length in X-rays and that expected if X-rays are observed over the distance that an outflow from the core would have traveled in ~6x10^4 yr. X-ray synchrotron loss times are shorter than this, and we suggest that most particle acceleration arises as a result of turbulence and dissipation in a stratified flow. We speculate that an episode of activity in the central engine beginning ~6x10^4 yr ago has led to an increased velocity shear. This has enhanced the ability of the jet plasma to accelerate electrons to X-ray-synchrotron-emitting energies, forming the X-ray jet and counterjet that we see today.
43 - M. E. Machacek 2010
We use Chandra X-ray observations of the hot gas in and around NGC6868 and NGC6861 in the Telescopium galaxy group (AS0851) to probe the interaction history between these galaxies. Mean surface brightness profiles for NGC6868 and NGC6861 are each wel l described by double beta-models, suggesting that they are each the dominant galaxy in a galaxy subgroup about to merge. Surface brightness and temperature maps of the brightest group galaxy NGC6868 show a cold front edge ~23 kpc to the north, and a cool 0.62 keV spiral-shaped tail to the south. Analysis of the temperature and density across the cold front constrains the relative motion between NGC6868 and the ambient group gas to be at most transonic; while the spiral morphology of the tail strongly suggests that the cold front edge and tail are the result of gas sloshing due to the subgroup merger. The cooler central region of NGC6861 is surrounded by a sheath of hot gas to the east and hot, bifurcated tails of X-ray emission to the west and northwest. We discuss supersonic infall of the NGC6861 subroup, sloshing from the NGC6868 and NGC6861 subgroup merger, and AGN heating as possible explanations for these features, and discuss possible scenarios that may contribute to the order of magnitude discrepancy between the Margorrian and black hole mass - sigma predictions for its central black hole.
We use a deep Chandra observation to examine the structure of the hot intra-group medium of the compact group of galaxies Stephans Quintet. The group is thought to be undergoing a strong dynamical interaction as an interloper, NGC 7318b, passes throu gh the group core at ~850 km/s. A bright ridge of X-ray and radio continuum emission has been interpreted as the result of shock heating, with support from observations at other wavelengths. We find that gas in this ridge has a similar temperature (~0.6 keV) and abundance (~0.3 solar) to the surrounding diffuse emission, and that a hard emission component is consistent with that expected from high-mass X-ray binaries associated with star-formation in the ridge. The cooling rate of gas in the ridge is consistent with the current star formation rate, suggesting that radiative cooling is driving the observed star formation. The lack of a high-temperature gas component is used to place constraints on the nature of the interaction and shock, and we find that an oblique shock heating a pre-existing filament of HI may be the most likely explanation of the X-ray gas in the ridge. The mass of hot gas in the ridge is only ~2 per cent of the total mass of hot gas in the group, which is roughly equal to the deficit in observed HI mass compared to predictions. The hot gas component is too extended to have been heated by the current interaction, strongly suggesting that it must have been heated during previous dynamical encounters.
We present analysis of Chandra and XMM-Newton observations of three early-type galaxies, NGC 57, NGC 7796 and IC 1531. All three are found in very low density environments, and appear to have no neighbours of comparable size. NGC 57 has a halo of kT~ 0.9 keV, solar metallicity gas, while NGC 7796 and IC 1531 both have ~0.55 keV, 0.5-0.6 Zsol haloes. IC 1531 has a relatively compact halo, and we consider it likely that gas has been removed from the system by the effects of AGN heating. For NGC 57 and NGC 7796 we estimate mass, entropy and cooling time profiles and find that NGC 57 has a fairly massive dark halo with a mass-to-light ratio of 44.7 (4.0,-8.5) Msol/Lsol (1 sigma uncertainties) at 4.75 Re. This is very similar to the mass-to-light ratio found for NGC 4555 and confirms that isolated ellipticals can possess sizable dark matter haloes. We find a significantly lower mass-to-light ratio for NGC 7796, 10.6 (+2.5,-2.3) Msol/Lsol at 5 Re, and discuss the possibility that NGC 7796 hosts a galactic wind, causing us to underestimate its mass.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا