ترغب بنشر مسار تعليمي؟ اضغط هنا

We present spectra of the nuclear regions of 50 nearby (D = 1 - 92 Mpc, median = 20 Mpc) galaxies of morphological types E to Sm. The spectra, obtained with the Gemini Near-IR Spectrograph on the Gemini North telescope, cover a wavelength range of ap proximately 0.85-2.5 microns at R~1300--1800. There is evidence that most of the galaxies host an active galactic nucleus (AGN), but the range of AGN luminosities (log (L2-10 keV [erg/s]) = 37.0-43.2) in the sample means that the spectra display a wide variety of features. Some nuclei, especially the Seyferts, exhibit a rich emission-line spectrum. Other objects, in particular the type 2 Low Ionisation Nuclear Emission Region galaxies, show just a few, weak emission lines, allowing a detailed view of the underlying stellar population. These spectra display numerous absorption features sensitive to the stellar initial mass function, as well as molecular bands arising in cool stars, and many other atomic absorption lines. We compare the spectra of subsets of galaxies known to be characterised by intermediate-age and old stellar populations, and find clear differences in their absorption lines and continuum shapes. We also examine the effect of atmospheric water vapor on the signal-to-noise ratio achieved in regions between the conventional NIR atmospheric windows, of potential interest to those planning observations of redshifted emission lines or other features affected by telluric H2O. Further exploitation of this data set is in progress, and the reduced spectra and data reduction tools are made available to the community.
Geminis Fast Turnaround program is intended to greatly decrease the time from having an idea to acquiring the supporting data. The scheme will offer monthly proposal submission opportunities, and proposals will be reviewed by the principal investigat ors or co-investigators of other proposals submitted during the same round. Here, we set out the design of the system and outline the plan for its implementation, leading to the launch of a pilot program at Gemini North in January 2015.
We present high-resolution mid-infrared (MIR) imaging, nuclear spectral energy distributions (SEDs) and archival Spitzer spectra for 22 low-luminosity active galactic nuclei (LLAGN; Lbol lesssim 10^42 erg/sec). Infrared (IR) observations may advance our understanding of the accretion flows in LLAGN, the fate of the obscuring torus at low accretion rates, and, perhaps, the star formation histories of these objects. However, while comprehensively studied in higher-luminosity Seyferts and quasars, the nuclear IR properties of LLAGN have not yet been well-determined. We separate the present LLAGN sample into three categories depending on their Eddington ratio and radio emission, finding different IR characteristics for each class. (I) At the low-luminosity, low-Eddington ratio (log Lbol/LEdd < -4.6) end of the sample, we identify host-dominated galaxies with strong polycyclic aromatic hydrocarbon bands that may indicate active (circum-)nuclear star formation. (II) Some very radio-loud objects are also present at these low Eddington ratios. The IR emission in these nuclei is dominated by synchrotron radiation, and some are likely to be unobscured type 2 AGN that genuinely lack a broad line region. (III) At higher Eddington ratios, strong, compact nuclear sources are visible in the MIR images. The nuclear SEDs of these galaxies are diverse; some resemble typical Seyfert nuclei, while others lack a well-defined MIR dust bump. Strong silicate emission is present in many of these objects. We speculate that this, together with high ratios of silicate strength to hydrogen column density, could suggest optically thin dust and low dust-to-gas ratios, in accordance with model predictions that LLAGN do not host a Seyfert-like obscuring torus.
Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper we have used an active region observation recorded by the Extre me-ultraviolet Imaging Spectrometer (EIS) onboard Hinode on 12-Dec-2007 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low density cut-off as derived by Tripathi et al. (2010). We have carried out a very careful analysis of the EIS wavelength calibration based on the method described in Young et al. (2012). For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km/s with an estimated error of 4-5 km/s. The width of the distribution decreases with temperature. The mean of the distribution shows a blue shift which increases with increasing temperature and the distribution also shows asymmetries towards blue-shift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. However, the fact that there are a significant number of pixels showing velocity amplitudes that exceed the uncertainty of 5 km s$^{-1}$ is suggestive of impulsive heating. Clearly, further observational constraints are needed to distinguish between these two heating scenarios.
64 - G. Mathys , S. Hubrig , E. Mason 2011
Hot cluster Horizontal Branch (HB) stars and field subdwarf B (sdB) stars are core helium burning stars that exhibit abundance anomalies that are believed to be due to atomic diffusion. Diffusion can be effective in these stars because they are slowl y rotating. In particular, the slow rotation of the hot HB stars (T_eff > 11000K), which show abundance anomalies, contrasts with the fast rotation of the cool HB stars, where the observed abundances are consistent with those of red giants belonging to the same cluster. The reason why sdB stars and hot HB stars are rotating slowly is unknown. In order to assess the possible role of magnetic fields on abundances and rotation, we investigated the occurrence of such fields in sdB stars with T_eff < 30000K, whose temperatures overlap with those of the hot HB stars. We conclude that large-scale organised magnetic fields of kG order are not generally present in these stars but at the achieved accuracy, the possibility that they have fields of a few hundred Gauss remains open. We report the marginal detection of such a field in SB 290; further observations are needed to confirm it.
Using data from the Extreme-ultraviolet Imaging Spectrometer aboard Hinode, we have studied the coronal plasma in the core of two active regions. Concentrating on the area between opposite polarity moss, we found emission measure distributions having an approximate power-law form EM$propto T^{2.4}$ from $log,T = 5.5$ up to a peak at $log,T = 6.55$. We show that the observations compare very favorably with a simple model of nanoflare-heated loop strands. They also appear to be consistent with more sophisticated nanoflare models. However, in the absence of additional constraints, steady heating is also a viable explanation.
271 - Durgesh Tripathi 2010
Using a full spectral scan of an active region from the Extreme-Ultraviolet Imaging Spectrometer (EIS) we have obtained Emission Measure EM$(T)$ distributions in two different moss regions within the same active region. We have compared these with th eoretical transition region EMs derived for three limiting cases, namely textit{static equilibrium}, textit{strong condensation} and textit{strong evaporation} from cite{ebtel}. The EM distributions in both the moss regions are strikingly similar and show a monotonically increasing trend from $log T[mathrm{K}]=5.15 -6.3$. Using photospheric abundances we obtain a consistent EM distribution for all ions. Comparing the observed and theoretical EM distributions, we find that the observed EM distribution is best explained by the textit{strong condensation} case (EM$_{con}$), suggesting that a downward enthalpy flux plays an important and possibly dominant role in powering the transition region moss emission. The downflows could be due to unresolved coronal plasma that is cooling and draining after having been impulsively heated. This supports the idea that the hot loops (with temperatures of 3{-}5 MK) seen in the core of active regions are heated by nanoflares.
We present a study of the physical plasma parameters such as electron temperature, electron density, column depth and filling factors in the moss regions and their variability over a short (an hour) and a long period (5 consecutive days) of time. Pri marily, we have analyzed the spectroscopic observations recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) aboard Hinode. In addition we have used supplementary observations taken from TRACE and the X-Ray Telescope (XRT). We find that the moss emission is strongest in the Fe xii and Fe xiii lines. Based on analyses using line ratios and emission measure we found that the moss region has a characteristic temperature of log T = 6.2. The electron densities measured at different locations in the moss regions using Fe xii ratios are about 1-3times1010 cm(-3) and about 2-4times10^9 cm^(-3) using Fe xiii and Fe xiv. The electron density substantially increases (by a factor of about 3-4 or even more in some cases) when a background subtraction was performed. The density and temperature show very small variation over time. The filling factor of the moss plasma can vary between 0.1-1 and the path length along which the emission originates is from a few 100 to a few 1000 kms long. By combining the observations recorded by TRACE, EIS and XRT, we find that the moss regions correspond to the foot-points of both hot and warm loops.
47 - A. Richichi , O. Fors , E. Mason 2008
For the first time, the lunar occultation technique has been employed on a very large telescope in the near-IR with the aim of achieving systematically milliarcsecond resolution on stellar sources. We have demonstrated the burst mode of the ISAAC i nstrument, using a fast read-out on a small area of the detector to record many tens of seconds of data at a time on fields of few squared arcsec. We have used the opportunity to record a large number of LO events during a passage of the Moon close to the Galactic Center in March 2006. We have developed a data pipeline for the treatment of LO data, including the automated estimation of the main data analysis parameters using a wavelet-based method, and the preliminary fitting and plotting of all light curves. We recorded 51 LO events over about four hours. Of these, 30 resulted of sufficient quality to enable a detailed fitting. We detected two binaries with subarcsec projected separation and three stars with a marginally resolved angular diameter of about 2 mas. Two more SiO masers, were found to be resolved and in one case we could recover the brightness profile of the extended emission, which is well consistent with an optically thin shell. The remaining unresolved stars were used to characterize the performance of the method. The LO technique at a very large telescope is a powerful and efficient method to achieve angular resolution, sensitivity, and dynamic range that are among the best possible today with any technique. The selection of targets is naturally limited and LOs are fixed-time events, however each observation requires only a few minutes including overheads. As such, LOs are ideally suited to fill small gaps of idle time between standard observations.
Aims: To study the origin and characteristics of a bright coronal downflow seen after a coronal mass ejection associated with erupting prominences on 5 March 2000. Methods: This study extends that of Tripathi et al. (A&A, v. 449, pp. 369) based on the Extreme-ultraviolet Imaging Telescope (EIT), the Soft X-ray Telescope (SXT) and the Large Angle Spectrometric Coronagraph (LASCO) observations. We combined those results with an analysis of the observations taken by the H${alpha}$ and the Mk4 coronagraphs at the Mauna Loa Solar Observatory (MLSO). The combined data-set spans a broad range of temperature as well as continuous observations from the solar surface out to 30 R$_{sun}$. Results: The downflow started at around 1.6R$_{sun}$ and contained both hot and cold gas. The downflow was observed in the H${alpha}$ and the Mk4 coronagraphs as well as the EIT and the SXT and was approximately co-spatial and co-temporal providing evidence of multi-thermal plasma. The H${alpha}$ and Mk4 images show cusp-shaped structures close to the location where the downflow started. Mk4 observations reveal that the speed of the downflow in the early phase was substantially higher than the free-fall speed, implying a strong downward acceleration near the height at which the downflow started. Conclusions: The origin of the downflow was likely to have been magnetic reconnection taking place inside the erupting flux rope that led to its bifurcation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا