ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a Gaussianity analysis of the WMAP 5-year Cosmic Microwave Background (CMB) temperature anisotropy data maps. We use several third order estimators based on the spherical Mexican hat wavelet. We impose constraints on the local non-linear c oupling parameter fnl using well motivated non-Gaussian simulations. We analyse the WMAP maps at resolution of 6.9 arcmin for the Q, V, and W frequency bands. We use the KQ75 mask recommended by the WMAP team which masks out 28% of the sky. The wavelet coefficients are evaluated at 10 different scales from 6.9 to 150 arcmin. With these coefficients we compute the third order estimators which are used to perform a chi-squared analysis. The chi-squared statistic is used to test the Gaussianity of the WMAP data as well as to constrain the fnl parameter. Our results indicate that the WMAP data are compatible with the Gaussian simulations, and the fnl parameter is constrained to -8 < fnl < +111 at 95% CL for the combined V+W map. This value has been corrected for the presence of undetected point sources, which add a positive contribution of Delta_fnl = 3+-5 in the V+W map. Our results are very similar to those obtained by Komatsu et al (2008) using the bispectrum.
Significant alignment and signed-intensity anomalies of local features of the cosmic microwave background (CMB) are detected on the three-year WMAP data, through a decomposition of the signal with steerable wavelets on the sphere. Firstly, an alignme nt analysis identifies two mean preferred planes in the sky, both with normal axes close to the CMB dipole axis. The first plane is defined by the directions toward which local CMB features are anomalously aligned. A mean preferred axis is also identified in this plane, located very close to the ecliptic poles axis. The second plane is defined by the directions anomalously avoided by local CMB features. This alignment anomaly provides further insight on recent results (Wiaux et al. 2006). Secondly, a signed-intensity analysis identifies three mean preferred directions in the southern galactic hemisphere with anomalously high or low temperature of local CMB features: a cold spot essentially identified with a known cold spot (Vielva et al. 2004), a second cold spot lying very close to the southern end of the CMB dipole axis, and a hot spot lying close to the southern end of the ecliptic poles axis. In both analyses, the anomalies are observed at wavelet scales corresponding to angular sizes around 10 degress on the celestial sphere, with global significance levels around 1%. Further investigation reveals that the alignment and signed-intensity anomalies are only very partially related. Instrumental noise, foreground emissions, as well as some form of other systematics, are strongly rejected as possible origins of the detections. An explanation might still be envisaged in terms of a global violation of the isotropy of the Universe, inducing an intrinsic statistical anisotropy of the CMB.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا