ترغب بنشر مسار تعليمي؟ اضغط هنا

Smectic order has been generated in superconducting Nb films with two-fold symmetry arrays of symmetric pinning centers. Magnetic fields applied perpendicularly to the films develop a vortex matter smectic phase that is easily detected when the vorti ces commensurate with the pinning center array. The smectic phase can be turned on and off with external parameters.
We present a simple nanodevice that can operate in two modes: i) three-state memory and ii) reading device. The nanodevice is fabricated with an array of ordered triangular-shaped nanomagnets embedded in a superconducting thin film. The input signal is ac current and the output signal is dc voltage. Vortex ratchet effect in combination with out of plane magnetic anisotropy of the nanomagnets is the background physics which governs the nanodevice performance.
Arrays of Ni nanodots embedded in Nb superconducting films have been fabricated by sputtering and electron beam lithography techniques. The arrays are periodic triangular lattices of circular Ni dots arranged in a kagome-like pattern with broken refl ection symmetry. Relevant behaviors are found in the vortex lattice dynamics : i) At values lower than the first integer matching field, several fractional matching fields are present when the vortex lattice moves parallel or perpendicular to the reflection symmetry axis of the array showing a clear anisotropic character in the magnetoresistance curves, ii) injecting an ac current perpendicular to the reflection symmetry axis of the array yields an unidirectional motion of the vortex lattice (ratchet effect) as a result of the interaction between the whole vortex lattice and the asymmetric lattice of dots, iii) increasing the input current amplitudes the ratchet effect changes polarity independently of matching field values. These experimental results can be explained taking into account the vortex lattice density.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا