ترغب بنشر مسار تعليمي؟ اضغط هنا

ZnO-based scintillation ceramics for application in HENPA LENPA analyzers have been investigated. The following ceramic samples have been prepared: undoped ones (ZnO), an excess of zinc in stoichiometry (ZnO:Zn), doped with gallium (ZnO:Ga) and lithi um (ZnO:Li). Optical transmission, x-ray excited emission, scintillation decay and pulse height spectra were measured and analyzed. Ceramics have reasonable transparency in visible range (up to 60% for 0.4 mm thickness) and energy resolution (14.9% at 662 keV Cs137 gamma excitation). Undoped ZnO shows slow (1.6 {mu}s) luminescence with maximum at 2.37 eV and light yield about 57% of CsI:Tl. ZnO:Ga ceramics show relatively low light yield with ultra fast decay time (1 ns). Lithium doped ceramics ZnO:Li have better decay time than undoped ZnO with fair light yield. ZnO:Li ceramics show good characteristics under alpha-particle excitation and can be applied for the neutral particle analyzers.
The spectral characteristics of ZnO:Ga and ZnO:Ga,N ceramics prepared by uniaxial hot pressing have been investigated. At room temperature, the edge (exciton) band at 3.12 eV dominates in the luminescence spectra of ZnO:Ga, while a wide luminescence band at 2.37 eV, which is likely to be due to zinc vacancies, is observed in the spectra of ZnO:Ga,N. Upon heating, the edge band maximum shifts to lower energies and the bandwidth increases. The extrapolated position of the edge-band maximum at zero temperature, Em(0) = 3.367 +/- 0.005 eV, is in agreement with the data for thin zinc oxide films. The luminescence excitation spectra in the range from 3 to 6.5 eV are reported and the mechanism of energy transfer to excitons and luminescence centers is considered.
Uniaxial hot pressing has been used to obtain ceramics based on zinc oxide, and their optical, x-ray-structure, luminescence, and scintillation characteristics have been studied. It is shown that, by changing the concentration of the dopant (Ga) and the codopant (N), it is possible to change the intensities of the edge band (397.5 nm) and the intraband luminescence (510 nm) of the ZnO luminescence, as well as their ratio. Undoped ZnO ceramic has good transparency in the visible region and fairly high luminous yield: 9050 photons per MeV. Ceramic ZnO:Ga possesses intense edge luminescence with a falloff time of about 1 ns.
Ceramics ZnO:Zn of 20mm diameter and 1.6mm thickness with an optical transparency up to 0.33 in the visible region have been prepared by hot pressing technique. Scintillating and luminescent characteristics such as emission spectra, decay time, yield , and TSL glow curve have been measured under X-ray excitation. Two emission bands peaking at 500 and 380 nm were detected, the light output was about 80% of that for standard BGO scintillator, main decay constant was 10.4 +/- 0.1 ns. The obtained data allow us to consider the ZnO:Zn ceramics as a perspective scintillator. Finally, the investigation shows that other ZnO-based fast scintillators can be fabricated in the form of optical ceramics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا