ترغب بنشر مسار تعليمي؟ اضغط هنا

Turbulence is ubiquitous in the insterstellar medium and plays a major role in several processes such as the formation of dense structures and stars, the stability of molecular clouds, the amplification of magnetic fields, and the re-acceleration and diffusion of cosmic rays. Despite its importance, interstellar turbulence, alike turbulence in general, is far from being fully understood. In this review we present the basics of turbulence physics, focusing on the statistics of its structure and energy cascade. We explore the physics of compressible and incompressible turbulent flows, as well as magnetized cases. The most relevant observational techniques that provide quantitative insights of interstellar turbulence are also presented. We also discuss the main difficulties in developing a three-dimensional view of interstellar turbulence from these observations. Finally, we briefly present what could be the the main sources of turbulence in the interstellar medium.
78 - D. A. Neufeld 2012
We report the first detection of interstellar mercapto radicals, obtained along the sight-line to the submillimeter continuum source W49N. We have used the GREAT instrument on SOFIA to observe the 1383 GHz Doublet Pi 3/2 J = 5/2 - 3/2 lambda doublet in the upper sideband of the L1 receiver. The resultant spectrum reveals SH absorption in material local to W49N, as well as in foreground gas, unassociated with W49N, that is located along the sight-line. For the foreground material at velocities in the range 37 - 44 km/s with respect to the local standard of rest, we infer a total SH column density ~ 2.6 E+12 cm-2, corresponding to an abundance of ~ 7 E-9 relative to H2, and yielding an SH/H2S abundance ratio ~ 0.13. The observed SH/H2S abundance ratio is much smaller than that predicted by standard models for the production of SH and H2S in turbulent dissipation regions and shocks, and suggests that the endothermic neutral-neutral reaction SH + H2 -> H2S + H must be enhanced along with the ion-neutral reactions believed to produce CH+ and SH+ in diffuse molecular clouds.
Aims. The HIFI instrument onboard Herschel has allowed high spectral resolution and sensitive observations of ground-state transi- tions of three molecular ions: the methylidyne cation CH+, its isotopologue 13CH+, and sulfanylium SH+. Because of thei r unique chemical properties, a comparative analysis of these cations provides essential clues to the link between the chemistry and dynamics of the diffuse interstellar medium. Methods. The CH+, 13CH+, and SH+ lines are observed in absorption towards the distant high-mass star-forming regions (SFRs) DR21(OH), G34.3+0.1, W31C, W33A, W49N, and W51, and towards two sources close to the Galactic centre, SgrB2(N) and SgrA*+50. All sight lines sample the diffuse interstellar matter along pathlengths of several kiloparsecs across the Galactic Plane. In order to compare the velocity structure of each species, the observed line profiles were deconvolved from the hyperfine structure of the SH+ transition and the CH+, 13CH+, and SH+ spectra were independently decomposed into Gaussian velocity components. To analyse the chemical composition of the foreground gas, all spectra were divided, in a second step, into velocity intervals over which the CH+, 13CH+, and SH+ column densities and abundances were derived. Results. SH+ is detected along all observed lines of sight, with a velocity structure close to that of CH+ and 13CH+. The linewidth distributions of the CH+, SH+, and 13CH+ Gaussian components are found to be similar. These distributions have the same mean (<deltau{psion}> ~ 4.2 km s-1) and standard deviation (sigma(deltau{psion}) ~ 1.5 km s-1). This mean value is also close to that of the linewidth distribution of the CH+ visible transitions detected in the solar neighbourhood. We show that the lack of absorption components narrower than 2 km s-1 is not an artefact caused by noise: the CH+, 13CH+, and SH+ line profiles are therefore statistically broader than those of most species detected in absorption in diffuse interstellar gas (e. g. HCO+, CH, or CN). The SH+/CH+ column density ratio observed in the components located away from the Galactic centre spans two orders of magnitude and correlates with the CH+ abundance. Conversely, the ratio observed in the components close to the Galactic centre varies over less than one order of magnitude with no apparent correlation with the CH+ abundance. The observed dynamical and chemical properties of SH+ and CH+ are proposed to trace the ubiquitous process of turbulent dissipation, in shocks or shears, in the diffuse ISM and the specific environment of the Galactic centre regions.
We report the first detection of the ground-state rotational transition of the methylidyne cation CH+ towards the massive star-forming region DR21 with the HIFI instrument onboard the Herschel satellite. The line profile exhibits a broad emission lin e, in addition to two deep and broad absorption features associated with the DR21 molecular ridge and foreground gas. These observations allow us to determine a CH+ J=1-0 line frequency of 835137 +/- 3 MHz, in good agreement with a recent experimental determination. We estimate the CH+ column density to be a few 1e13 cm^-2 in the gas seen in emission, and > 1e14 cm^-2 in the components responsible for the absorption, which is indicative of a high line of sight average abundance [CH+]/[H] > 1.2x10^-8. We show that the CH+ column densities agree well with the predictions of state-of-the-art C-shock models in dense UV-illuminated gas for the emission line, and with those of turbulent dissipation models in diffuse gas for the absorption lines.
Fourier phases contain a vast amount of information about structure in direct space, that most statistical tools never tap into. We address ALMAs ability to detect and recover this information, using the probability distribution function (PDF) of pha se increments, and the related concepts of phase entropy and phase structure quantity. We show that ALMA, with its high dynamical range, is definitely needed to achieve significant detection of phase structure, and that it will do so even in the presence of a fair amount of atmospheric phase noise. We also show that ALMA should be able to recover the actual amount of phase structure in the noise-free case, if multiple configurations are used.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا