ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong CH+ J=1-0 emission and absorption in DR21

154   0   0.0 ( 0 )
 نشر من قبل Volker Ossenkopf
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first detection of the ground-state rotational transition of the methylidyne cation CH+ towards the massive star-forming region DR21 with the HIFI instrument onboard the Herschel satellite. The line profile exhibits a broad emission line, in addition to two deep and broad absorption features associated with the DR21 molecular ridge and foreground gas. These observations allow us to determine a CH+ J=1-0 line frequency of 835137 +/- 3 MHz, in good agreement with a recent experimental determination. We estimate the CH+ column density to be a few 1e13 cm^-2 in the gas seen in emission, and > 1e14 cm^-2 in the components responsible for the absorption, which is indicative of a high line of sight average abundance [CH+]/[H] > 1.2x10^-8. We show that the CH+ column densities agree well with the predictions of state-of-the-art C-shock models in dense UV-illuminated gas for the emission line, and with those of turbulent dissipation models in diffuse gas for the absorption lines.



قيم البحث

اقرأ أيضاً

84 - P. de Vicente 2016
Observations of 28SiO v=0 J=1-0 line emission (7-mm wavelength) from AGB stars show in some cases peculiar profiles, composed of a central intense component plus a wider plateau. Very similar profiles have been observed in CO lines from some AGB star s and most post-AGB nebulae and, in these cases, they are clearly associated with the presence of conspicuous axial symmetry and bipolar dynamics. We present systematic observations of 28SiO v=0 J=1-0 emission in 28 evolved stars, performed with the 40~m radio telescope of the IGN in Yebes, Spain. We find that the composite core plus plateau profiles are almost always present in O-rich Miras, OH/IR stars, and red supergiants. They are also found in one S-type Mira ($chi$ Cyg), as well as in two semiregular variables (X Her and RS Cnc) that are known to show axial symmetry. In the other objects, the profiles are simpler and similar to those of other molecular lines. The composite structure appears in the objects in which SiO emission is thought to come from the very inner circumstellar layers, prior to dust formation. The central spectral feature is found to be systematically composed of a number of narrow spikes, except for X Her and RS Cnc, in which it shows a smooth shape that is very similar to that observed in CO emission. These spikes show a significant (and mostly chaotic) time variation, while in all cases the smooth components remain constant within the uncertainties. The profile shape could come from the superposition of standard wide profiles and a group of weak maser spikes. Alternatively, we speculate that the very similar profiles detected in objects that are axisymmetric may be indicative of the systematic presence of a significant axial symmetry in the very inner circumstellar shells around AGB stars; the presence of such symmetry would be independent of the probable weak maser effects in the central spikes.
Young massive stars regulate the physical conditions, ionization, and fate of their natal molecular cloud. It is important to find tracers that help quantifying the stellar feedback processes that take place at different scales. We present ~85 arcmin ^2 velocity-resolved maps of several submm molecular lines toward the closest high-mass star-forming region, OMC-1. The observed rotational lines include probes of warm and dense molecular gas that are difficult to detect from ground-based telescopes: CH+ (1-0), CO (10-9), HCO+ (6-5), and HCN (6-5). These lines trace an extended but thin layer of molecular gas at high thermal pressure, P_th ~ 1e7-1e9 K/cm3, associated with the FUV-irradiated surface of OMC-1. The intense FUV field, emerging from massive stars in the Trapezium cluster, heats, compresses and photoevaporates the cloud edge. It also triggers the formation of reactive molecules such as CH+. The CH+ (1-0) emission spatially correlates with the flux of FUV photons impinging the cloud: G_0 from 1e3 to 1e5. This correlation is supported by isobaric PDR models in the parameter space P_th/G_0 ~ [5e3-8e4] K/cm3 where many PDRs seem to lie. The CH+ (1-0) emission correlates with the extended emission from vibrationally excited H2, and with that of [CII]158um and CO 10-9, all emerging from FUV-irradiated gas. These correlations link the presence of CH+ to the availability of C+ ions and of FUV-pumped H2(v>0) molecules. The parsec-scale CH+ emission and narrow-line (dv ~ 3 km/s) mid-J CO emission arises from extended PDRs and not from fast shocks. PDR line tracers are the smoking gun of the stellar feedback from young massive stars. The PDR component in OMC-1 represents 5 to 10% of the total gas mass, however, it dominates the emitted line luminosity. These results provide insights into the source of submm CH+ and mid-J CO emission from distant star-forming galaxies.
We present a study using the Karl G. Jansky Very Large Array of 12CO J=1-0 emission in three strongly lensed submillimetre-selected galaxies (SMMJ16359, SMMJ14009 and SMMJ02399) at z=2.5-2.9. These galaxies span L(IR) = 10^11 - 10^13 Lsun, offering a n opportunity to compare the interstellar medium of LIRGs and ULIRGs at high redshift. We estimate molecular gas masses in the range (2-40) x 10^9 Msun using a method that assumes canonical underlying brightness temperature ratios for star-forming and non-star-forming gas phases and a maximal star-formation efficiency. A more simplistic method using X(CO) = 0.8 yields gas masses twice as high. The observed CO(3-2)/CO(1-0) brightness temperature ratio for SMMJ14009, r(3-2)/(1-0) = (0.95 pm 0.12), is indicative of warm star-forming gas, possibly influenced by the central AGN. We search for 12CO(1-0) emission in the Lyman-break galaxy, A2218 #384, located at z=2.517 in the same field as SMMJ16359, and assign a 3-sigma gas mass limit of <6 x 10^8 Msun. We use rest-frame 115-GHz free-free flux densities in SMMJ14009 and SMMJ02399 - measurements tied directly to the photionisation rate of massive stars and made possible by the VLAs bandwidth - to estimate star-formation rates of 400-600 Msun/yr and to estimate the fraction of L(IR) due to the AGN.
This {it supplement} paper presents the maps of HCN $J$=4-3, HNC $J$=1-0, $mathrm{H^{13}CN}$ $J$=1-0, and HC$_3$N $J$=10-9 for the Galactic central molecular zone (CMZ), which have been obtained using the Atacama Submillimeter Telescope Experiment an d Nobeyama Radio Observatory 45-m telescope. Three-dimensional maps (2-D in space and 1-D in velocity) of the gas kinetic temperature ($T_mathrm{kin}$), hydrogen volume density ($n_mathrm{H_2}$), and fractional abundances of eight molecules (HCN, HNC, $mathrm{HC_3N}$, HCO$^+$, $mathrm{H_2CO}$, SiO, CS, and $mathrm{N_2H^+}$) have been constructed from our and archival data. We have developed a method with hierarchical Bayesian inference for this analysis, which has successfully suppressed the artificial correlations among the parameters created by systematic errors due to the deficiency in the simple one-zone excitation analysis and the calibration uncertainty. The typical values of $T_mathrm{kin}$ and $n_mathrm{H_2}$ are $10^{1.8} $K and $10^{4.2} mathrm{cm}^{-3}$, respectively, and the presence of an additional cold/low-density component is also indicated. The distribution of high-temperature regions is poorly correlated with known active star-forming regions, while a few of them coincide with shocked clouds. Principal component analysis has identified two distinct groups in the eight analyzed molecules: one group with large PC1 and PC2 scores and the other with a large $T_mathrm{kin}$ dependence, which could be explained using two regimes of shock chemistry with fast ($gtrsim 20 mathrm{km,s}^{-1}$) and slow ($lesssim 20 mathrm{km,s}^{-1}$) velocity shocks, respectively. This supports the idea that the mechanical sputtering of dust grains and the mechanical heating play primary roles in the chemical and thermal processes in CMZ clouds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا