ترغب بنشر مسار تعليمي؟ اضغط هنا

84 - D. Volpi 2009
The main goal of our present work is to provide, for the first time, a simple computational tool that can be used to compute the brightness, the spectral index, the polarization, the time variability and the spectrum of the non-thermal light (both sy nchrotron and inverse Compton, IC) associated with the plasma dynamics resulting from given relativistic magnetohydrodynamics (RMHD) simulations. The proposed method is quite general, and can be applied to any scheme for RMHD and to all non-thermal emitting sources, e.g. pulsar wind nebulae (PWNe), and in particular to the Crab Nebula (CN) as in the present proceeding. Here only the linear optical and X-ray polarization that characterizes the PWNe synchrotron emission is analyzed in order to infer information on the inner bulk flow structure, to provide a direct investigation of the magnetic field configuration, in particular the presence and the strength of a poloidal component, and to understand the origin of some emitting features, such as the knot, whose origins are still uncertain. The inverse Compton radiation is examined to disentangle the different contributions to radiation from the magnetic field and the particle energy distribution function, and to search for a possible hadronic component in the emitting PWN, and thus for the presence of ions in the wind. If hadronic radiation was found in a PWN, young supernova remnants would provide a natural birth-place of the cosmic-rays (CRs) up to the so-called knee in the CR spectrum.
71 - D. Volpi 2008
In this paper we complete the set of diagnostic tools for synchrotron emitting sources presented by Del Zanna et al. (Astron. Astrophys. 453, 621, 2006) with the computation of inverse Compton radiation from the same relativistic particles. Moreover we investigate, for the first time, the gamma-ray emission properties of Pulsar Wind Nebulae in the light of the axisymmetric jet-torus scenario. The method consists in evolving the relativistic MHD equations and the maximum energy of the emitting particles. The particle energy distribution function is split in two components: the radio one connected to a relic population born at the outburst of the supernova and the other associated to the wind population continuously accelerated at the termination shock and emitting up to the gamma-ray band. We consider the general Klein-Nishina cross section and three different photon targets: the nebular synchrotron photons, far-infrared thermal ones and the cosmic microwave background. The overall synchrotron spectrum is fitted assuming an excess of injected particles and a steeper power law with respect to previous models. The TeV emission has the correct shape but is in excess of the data. This is due to the nebular magnetic field structure as obtained by the simulations. The jet-torus morphology is visible in high-resolution gamma-ray synthetic maps too. We present a preliminary exploration of time variability in the X and gamma-ray bands.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا