ترغب بنشر مسار تعليمي؟ اضغط هنا

91 - J. Chen , A.G. Hawkes , E. Scalas 2020
We modify ETAS models by replacing the Pareto-like kernel proposed by Ogata with a Mittag-Leffler type kernel. Provided that the kernel decays as a power law with exponent $beta + 1 in (1,2]$, this replacement has the advantage that the Laplace trans form of the Mittag-Leffler function is known explicitly, leading to simpler calculation of relevant quantities.
We test three common information criteria (IC) for selecting the order of a Hawkes process with an intensity kernel that can be expressed as a mixture of exponential terms. These processes find application in high-frequency financial data modelling. The information criteria are Akaikes information criterion (AIC), the Bayesian information criterion (BIC) and the Hannan-Quinn criterion (HQ). Since we work with simulated data, we are able to measure the performance of model selection by the success rate of the IC in selecting the model that was used to generate the data. In particular, we are interested in the relation between correct model selection and underlying sample size. The analysis includes realistic sample sizes and parameter sets from recent literature where parameters were estimated using empirical financial intra-day data. We compare our results to theoretical predictions and similar empirical findings on the asymptotic distribution of model selection for consistent and inconsistent IC.
118 - N. Leonenko , E. Scalas , M. Trinh 2016
We introduce a non-homogeneous fractional Poisson process by replacing the time variable in the fractional Poisson process of renewal type with an appropriate function of time. We characterize the resulting process by deriving its non-local governing equation. We further compute the first and second moments of the process. Eventually, we derive the distribution of arrival times. Constant reference is made to previous known results in the homogeneous case and to how they can be derived from the specialization of the non-homogeneous process.
At present, there is an explosion of practical interest in the pricing of interest rate (IR) derivatives. Textbook pricing methods do not take into account the leptokurticity of the underlying IR process. In this paper, such a leptokurtic behaviour i s illustrated using LIBOR data, and a possible martingale pricing scheme is discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا