ترغب بنشر مسار تعليمي؟ اضغط هنا

On pricing of interest rate derivatives

170   0   0.0 ( 0 )
 نشر من قبل Tiziana Di Matteo
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

At present, there is an explosion of practical interest in the pricing of interest rate (IR) derivatives. Textbook pricing methods do not take into account the leptokurticity of the underlying IR process. In this paper, such a leptokurtic behaviour is illustrated using LIBOR data, and a possible martingale pricing scheme is discussed.



قيم البحث

اقرأ أيضاً

An empirical analysis of interest rates in money and capital markets is performed. We investigate a set of 34 different weekly interest rate time series during a time period of 16 years between 1982 and 1997. Our study is focused on the collective be havior of the stochastic fluctuations of these time-series which is investigated by using a clustering linkage procedure. Without any a priori assumption, we individuate a meaningful separation in 6 main clusters organized in a hierarchical structure.
Recent progress in the development of efficient computational algorithms to price financial derivatives is summarized. A first algorithm is based on a path integral approach to option pricing, while a second algorithm makes use of a neural network pa rameterization of option prices. The accuracy of the two methods is established from comparisons with the results of the standard procedures used in quantitative finance.
The scaling properties encompass in a simple analysis many of the volatility characteristics of financial markets. That is why we use them to probe the different degree of markets development. We empirically study the scaling properties of daily Fore ign Exchange rates, Stock Market indices and fixed income instruments by using the generalized Hurst approach. We show that the scaling exponents are associated with characteristics of the specific markets and can be used to differentiate markets in their stage of development. The robustness of the results is tested by both Monte-Carlo studies and a computation of the scaling in the frequency-domain.
281 - Eduard Rotenstein 2013
We shall study backward stochastic differential equations and we will present a new approach for the existence of the solution. This type of equation appears very often in the valuation of financial derivatives in complete markets. Therefore, the ide ntification of the solution as the unique element in a certain Banach space where a suitably chosen functional attains its minimum becomes interesting for numerical computations.
The dynamics of prices in financial markets has been studied intensively both experimentally (data analysis) and theoretically (models). Nevertheless, a complete stochastic characterization of volatility is still lacking. What it is well known is tha t absolute returns have memory on a long time range, this phenomenon is known as clustering of volatility. In this paper we show that volatility correlations are power-laws with a non-unique scaling exponent. This kind of multiscale phenomenology, which is well known to physicists since it is relevant in fully developed turbulence and in disordered systems, is recently pointed out for financial series. Starting from historical returns series, we have also derived the volatility distribution, and the results are in agreement with a log-normal shape. In our study we consider the New York Stock Exchange (NYSE) daily composite index closes (January 1966 to June 1998) and the US Dollar/Deutsch Mark (USD-DM) noon buying rates certified by the Federal Reserve Bank of New York (October 1989 to September 1998).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا