ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent advancements in the understanding of jet-disc coupling in black hole candidate X-ray binaries (BHXBs) have provided close links between radio jet emission and X-ray spectral and variability behaviour. In soft X-ray states the jets are suppress ed, but the current picture lacks an understanding of the X-ray features associated with the quenching or recovering of these jets. Here we show that a brief, ~4 day infrared (IR) brightening during a predominantly soft X-ray state of the BHXB 4U 1543-47 is contemporaneous with a strong X-ray Type B quasi-periodic oscillation (QPO), a slight spectral hardening and an increase in the rms variability, indicating an excursion to the soft-intermediate state (SIMS). This IR flare has a spectral index consistent with optically thin synchrotron emission and most likely originates from the steady, compact jet. This core jet emitting in the IR is usually only associated with the hard state, and its appearance during the SIMS places the jet line between the SIMS and the soft state in the hardness-intensity diagram for this source. IR emission is produced in a small region of the jets close to where they are launched (~ 0.1 light-seconds), and the timescale of the IR flare in 4U 1543-47 is far too long to be caused by a single, discrete ejection. We also present a summary of the evolution of the jet and X-ray spectral/variability properties throughout the whole outburst, constraining the jet contribution to the X-ray flux during the decay.
We have investigated the complex multiwavelength evolution of GRO J1655-40 during the rise of its 2005 outburst. We detected two hard X-ray flares, the first one during the transition from the soft state to the ultra-soft state, and the second one in the ultra-soft state. The first X-ray flare coincided with an optically thin radio flare. We also observed a hint of increased radio emission during the second X-ray flare. To explain the hard flares without invoking a secondary emission component, we fit the entire data set with the eqpair model. This single, hybrid Comptonization model sufficiently fits the data even during the hard X-ray flares if we allow reflection fractions greater than unity. In this case, the hard X-ray flares correspond to a Comptonizing corona dominated by non-thermal electrons. The fits also require absorption features in the soft and ultra-soft state which are likely due to a wind. In this work we show that the wind and the optically thin radio flare co-exist. Finally, we have also investigated the radio to optical spectral energy distribution, tracking the radio spectral evolution through the quenching of the compact jet and rise of the optically thin flare, and interpreted all data using state transition models.
Galactic black hole transients show many interesting phenomena during outburst decays. We present simultaneous X-ray (RXTE, Swift, and INTEGRAL), and optical/near-infrared (O/NIR) observations (SMARTS) of the X-ray transient XTE J1752-223 during its outburst decay in 2010. The multiwavelength observations over 150 days in 2010 cover the transition from soft to hard spectral state. We discuss the evolution of radio emission is with respect to the O/NIR light curve which shows several flares. One of those flares is bright and long, starting about 60 days after the transition in X-ray timing properties. During this flare, the radio spectral index becomes harder. Other smaller flares occur along with the X-ray timing transition, and also right after the detection of the radio core. We discuss the significances of these flares. Furthermore, using the simultaneous broadband X-ray spectra including INTEGRAL, we find that a high energy cut-off with a folding energy near 250 keV is necessary around the time that the compact jet is forming. The broad band spectrum can be fitted equally well with a Comptonization model. In addition, using photoelectric absorption edges in the XMM-Newton RGS X-ray spectra and the extinction of red clump giants in the direction of the source, we find a lower limit on the distance of > 5 kpc.
Measuring the polarization of the prompt gamma-ray emission from GRBs can significantly improve our understanding of both the GRB emission mechanisms, as well as the underlying engine driving the explosion. We searched for polarization in the prompt gamma-ray emission of GRB 041219a with the SPI instrument on INTEGRAL. Using multiple-detector coincidence events in the 100--350 keV energy band, our analysis yields a polarization fraction from this GRB of 99 +- 33 %. Statistically, we cannot claim a polarization detection from this source. Moreover, different event selection criteria lead to even less significant polarization fractions, e.g. lower polarization fractions are obtained when higher energies are included in the analysis. We cannot strongly rule out the possibility that the measured modulation is dominated by instrumental systematics. Therefore, SPI observations of GRB 041219a do not significantly constrain GRB models. However, this measurement demonstrates the capability of SPI to measure polarization, and the techniques developed for this analysis.
The remnant of the supernova of 1006 AD, the remnant first showing evidence for the presence of X-ray synchrotron emission from shock-accelerated electrons, was observed for ~1000 ksec with INTEGRAL for the study of electron acceleration to very high energies. The aim of the observation was to characterize the synchrotron emission, and attempt to detect non-thermal bremsstrahlung, using the combination of IBIS and JEM-X spatial and spectral coverage. The source was detected with JEM-X between 2.4 and 8.4 keV bands, and not detected with either ISGRI or SPI above 20 keV. The ISGRI upper limit is about a factor of four above current model predictions, but confirms the presence of steepening in the power-law extrapolated from lower energies (< 4 keV).
Historical Type Ia supernovae are a leading candidate for the source of positrons observed through their diffuse annihilation emission in the Galaxy. However, search for annihilation emission from individual Type Ia supernovae has not been possible b efore the improved sensitivity of integral. The total 511 keV annihilation flux from individual SNe Ia, as well as their contribution to the overall diffuse emission, depends critically on the escape fraction of positrons produced in $^{56}$Co decays. Late optical light curves suggest that this fraction may be as high as 5%. We searched for positron annihilation radiation from the historical Type Ia supernova SN 1006 using the SPI instrument on integral. We did not detect significant 511 keV line emission, with a 3$sigma$ flux upper limit of 0.59 x 10$^{-4}$ ergs cm^-2 s^-1 for wsim 1 Msec exposure time, assuming a FWHM of 2.5 keV. This upper limit corresponds to a 7.5% escape fraction, 50% higher than the expected 5% escape scenario, and rules out the possibility that Type Ia supernovae produce all of the positrons in the Galaxy (~ 12% escape fraction), if the mean positron lifetime is less than 10$^{5}$ years. Future observations with integral will provide stronger limits on the escape fraction of positrons, the mean positron lifetime, and the contribution of Type Ia supernovae to the overall positron content of the Galaxy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا