ترغب بنشر مسار تعليمي؟ اضغط هنا

We describe a novel algorithm for random sampling of freely reduced words equal to the identity in a finitely presented group. The algorithm is based on Metropolis Monte Carlo sampling. The algorithm samples from a stretched Boltzmann distribution be gin{align*}pi(w) &= (|w|+1)^{alpha} beta^{|w|} cdot Z^{-1} end{align*} where $|w|$ is the length of a word $w$, $alpha$ and $beta$ are parameters of the algorithm, and $Z$ is a normalising constant. It follows that words of the same length are sampled with the same probability. The distribution can be expressed in terms of the cogrowth series of the group, which then allows us to relate statistical properties of words sampled by the algorithm to the cogrowth of the group, and hence its amenability. We have implemented the algorithm and applied it to several group presentations including the Baumslag-Solitar groups, some free products studied by Kouksov, a finitely presented amenable group that is not subexponentially amenable (based on the basilica group), and Richard Thompsons group $F$.
We compute the cogrowth series for Baumslag-Solitar groups $mathrm{BS}(N,N) = < a,b | a^N b = b a^N > $, which we show to be D-finite. It follows that their cogrowth rates are algebraic numbers.
We propose a numerical method for studying the cogrowth of finitely presented groups. To validate our numerical results we compare them against the corresponding data from groups whose cogrowth series are known exactly. Further, we add to the set of such groups by finding the cogrowth series for Baumslag-Solitar groups $mathrm{BS}(N,N) = < a,b | a^N b = b a^N >$ and prove that their cogrowth rates are algebraic numbers.
A directed path in the vicinity of a hard wall exerts pressure on the wall because of loss of entropy. The pressure at a particular point may be estimated by estimating the loss of entropy if the point is excluded from the path. In this paper we dete rmine asymptotic expressions for the pressure on the X-axis in models of adsorbing directed paths in the first quadrant. Our models show that the pressure vanishes in the limit of long paths in the desorbed phase, but there is a non-zero pressure in the adsorbed phase. We determine asymptotic approximations of the pressure for finite length Dyck paths and directed paths, as well as for a model of adsorbing staircase polygons with both ends grafted to the X-axis.
In this paper the number and lengths of minimal length lattice knots confined to slabs of width $L$, is determined. Our data on minimal length verify the results by Sharein et.al. (2011) for the similar problem, expect in a single case, where an impr ovement is found. From our data we construct two models of grafted knotted ring polymers squeezed between hard walls, or by an external force. In each model, we determine the entropic forces arising when the lattice polygon is squeezed by externally applied forces. The profile of forces and compressibility of several knot types are presented and compared, and in addition, the total work done on the lattice knots when it is squeezed to a minimal state is determined.
In this paper the elementary moves of the BFACF-algorithm for lattice polygons are generalised to elementary moves of BFACF-style algorithms for lattice polygons in the body-centred (BCC) and face-centred (FCC) cubic lattices. We prove that the ergod icity classes of these new elementary moves coincide with the knot types of unrooted polygons in the BCC and FCC lattices and so expand a similar result for the cubic lattice. Implementations of these algorithms for knotted polygons using the GAS algorithm produce estimates of the minimal length of knotted polygons in the BCC and FCC lattices.
We show that the classical Rosenbluth method for sampling self-avoiding walks can be extended to a general algorithm for sampling many families of objects, including self-avoiding polygons. The implementation relies on an elementary move which is a g eneralisation of kinetic growth; rather than only appending edges to the endpoint, edges may be inserted at any vertex providing the resulting objects still lie within the same family. We implement this method using pruning and enrichment to sample self-avoiding walks and polygons. The algorithm can be further extended by mixing it with length-preserving moves, such pivots and crank-shaft moves.
The enumeration of lattice paths in wedges poses unique mathematical challenges. These models are not translationally invariant, and the absence of this symmetry complicates both the derivation of a functional recurrence for the generating function, and solving for it. In this paper we consider a model of partially directed walks from the origin in the square lattice confined to both a symmetric wedge defined by $Y = pm pX$, and an asymmetric wedge defined by the lines $Y= pX$ and Y=0, where $p > 0$ is an integer. We prove that the growth constant for all these models is equal to $1+sqrt{2}$, independent of the angle of the wedge. We derive functional recursions for both models, and obtain explicit expressions for the generating functions when $p=1$. From these we find asymptotic formulas for the number of partially directed paths of length $n$ in a wedge when $p=1$. The functional recurrences are solved by a variation of the kernel method, which we call the ``iterated kernel method. This method appears to be similar to the obstinate kernel method used by Bousquet-Melou. This method requires us to consider iterated compositions of the roots of the kernel. These compositions turn out to be surprisingly tractable, and we are able to find simple explicit expressions for them. However, in spite of this, the generating functions turn out to be similar in form to Jacobi $theta$-functions, and have natural boundaries on the unit circle.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا