ترغب بنشر مسار تعليمي؟ اضغط هنا

In light of the recent BICEP2 B-mode polarization detection, which implies a large inflationary tensor-to-scalar ratio r_{0.05}=0.2^{+0.07}_{-0.05}, we re-examine the evidence for an extra sterile massive neutrino, originally invoked to account for t he tension between the cosmic microwave background (CMB) temperature power spectrum and local measurements of the expansion rate H0 and cosmological structure. With only the standard active neutrinos and power-law scalar spectra, this detection is in tension with the upper limit of r<0.11 (95% confidence) from the lack of a corresponding low multipole excess in the temperature anisotropy from gravitational waves. An extra sterile species with the same energy density as is needed to reconcile the CMB data with H0 measurements can also alleviate this new tension. By combining data from the Planck and ACT/SPT temperature spectra, WMAP9 polarization, H_0, baryon acoustic oscillation and local cluster abundance measurements with BICEP2 data, we find the joint evidence for a sterile massive neutrino increases to DeltaNeff=0.98pm 0.26 for the effective number and ms= 0.52pm 0.13 eV for the effective mass or 3.8 sigma and 4 sigma evidence respectively. We caution the reader that these results correspond to a joint statistical evidence and, in addition, astrophysical systematic errors in the clusters and H0 measurements, and small-scale CMB data could weaken our conclusions.
Current measurements of the low and high redshift Universe are in tension if we restrict ourselves to the standard six parameter model of flat $Lambda$CDM. This tension has two parts. First, the Planck satellite data suggest a higher normalization of matter perturbations than local measurements of galaxy clusters. Second, the expansion rate of the Universe today, $H_0$, derived from local distance-redshift measurements is significantly higher than that inferred using the acoustic scale in galaxy surveys and the Planck data as a standard ruler. The addition of a sterile neutrino species changes the acoustic scale and brings the two into agreement; meanwhile, adding mass to the active neutrinos or to a sterile neutrino can suppress the growth of structure, bringing the cluster data into better concordance as well. For our fiducial dataset combination, with statistical errors for clusters, a model with a massive sterile neutrino shows 3.5$sigma$ evidence for a non-zero mass and an even stronger rejection of the minimal model. A model with massive active neutrinos and a massless sterile neutrino is similarly preferred. An eV-scale sterile neutrino mass -- of interest for short baseline and reactor anomalies -- is well within the allowed range. We caution that 1) unknown astrophysical systematic errors in any of the data sets could weaken this conclusion, but they would need to be several times the known errors to eliminate the tensions entirely; 2) the results we find are at some variance with analyses that do not include cluster measurements; and 3) some tension remains among the datasets even when new neutrino physics is included.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا