ترغب بنشر مسار تعليمي؟ اضغط هنا

The Possible Winner problem asks, given an election where the voters preferences over the candidates are specified only partially, whether a designated candidate can become a winner by suitably extending all the votes. Betzler and Dorn [1] proved a r esult that is only one step away from a full dichotomy of this problem for the important class of pure scoring rules in the case of unweighted voters and an unbounded number of candidates: Possible Winner is NP-complete for all pure scoring rules except plurality, veto, and the scoring rule with vector (2,1,...,1,0), but is solvable in polynomial time for plurality and veto. We take the final step to a full dichotomy by showing that Possible Winner is NP-complete also for the scoring rule with vector (2,1,...,1,0).
Given a binary dominance relation on a set of alternatives, a common thread in the social sciences is to identify subsets of alternatives that satisfy certain notions of stability. Examples can be found in areas as diverse as voting theory, game theo ry, and argumentation theory. Brandt and Fischer [BF08] proved that it is NP-hard to decide whether an alternative is contained in some inclusion-minimal upward or downward covering set. For both problems, we raise this lower bound to the Theta_{2}^{p} level of the polynomial hierarchy and provide a Sigma_{2}^{p} upper bound. Relatedly, we show that a variety of other natural problems regarding minimal or minimum-size covering sets are hard or complete for either of NP, coNP, and Theta_{2}^{p}. An important consequence of our results is that neither minimal upward nor minimal downward covering sets (even when guaranteed to exist) can be computed in polynomial time unless P=NP. This sharply contrasts with Brandt and Fischers result that minimal bidirectional covering sets (i.e., sets that are both minimal upward and minimal downward covering sets) are polynomial-time computable.
Holzer and Holzer (Discrete Applied Mathematics 144(3):345--358, 2004) proved that the Tantrix(TM) rotation puzzle problem with four colors is NP-complete, and they showed that the infinite variant of this problem is undecidable. In this paper, we st udy the three-color and two-color Tantrix(TM) rotation puzzle problems (3-TRP and 2-TRP) and their variants. Restricting the number of allowed colors to three (respectively, to two) reduces the set of available Tantrix(TM) tiles from 56 to 14 (respectively, to 8). We prove that 3-TRP and 2-TRP are NP-complete, which answers a question raised by Holzer and Holzer in the affirmative. Since our reductions are parsimonious, it follows that the problems Unique-3-TRP and Unique-2-TRP are DP-complete under randomized reductions. We also show that the another-solution problems associated with 4-TRP, 3-TRP, and 2-TRP are NP-complete. Finally, we prove that the infinite variants of 3-TRP and 2-TRP are undecidable.
Holzer and Holzer (Discrete Applied Mathematics 144(3):345--358, 2004) proved that the Tantrix(TM) rotation puzzle problem is NP-complete. They also showed that for infinite rotation puzzles, this problem becomes undecidable. We study the counting ve rsion and the unique version of this problem. We prove that the satisfiability problem parsimoniously reduces to the Tantrix(TM) rotation puzzle problem. In particular, this reduction preserves the uniqueness of the solution, which implies that the unique Tantrix(TM) rotation puzzle problem is as hard as the unique satisfiability problem, and so is DP-complete under polynomial-time randomized reductions, where DP is the second level of the boolean hierarchy over NP.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا