ترغب بنشر مسار تعليمي؟ اضغط هنا

Identification of communities in complex networks has become an effective means to analysis of complex systems. It has broad applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and fin ding communities of links are two popular schemes for network structure analysis. These schemes, however, have inherent drawbacks and are often inadequate to properly capture complex organizational structures in real networks. We introduce a new scheme and effective approach for identifying complex network structures using a mixture of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large semantic association network of commonly used words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا