ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning transferable and domain adaptive feature representations from videos is important for video-relevant tasks such as action recognition. Existing video domain adaptation methods mainly rely on adversarial feature alignment, which has been deri ved from the RGB image space. However, video data is usually associated with multi-modal information, e.g., RGB and optical flow, and thus it remains a challenge to design a better method that considers the cross-modal inputs under the cross-domain adaptation setting. To this end, we propose a unified framework for video domain adaptation, which simultaneously regularizes cross-modal and cross-domain feature representations. Specifically, we treat each modality in a domain as a view and leverage the contrastive learning technique with properly designed sampling strategies. As a result, our objectives regularize feature spaces, which originally lack the connection across modalities or have less alignment across domains. We conduct experiments on domain adaptive action recognition benchmark datasets, i.e., UCF, HMDB, and EPIC-Kitchens, and demonstrate the effectiveness of our components against state-of-the-art algorithms.
Unsupervised domain adaptation (UDA) methods can dramatically improve generalization on unlabeled target domains. However, optimal hyper-parameter selection is critical to achieving high accuracy and avoiding negative transfer. Supervised hyper-param eter validation is not possible without labeled target data, which raises the question: How can we validate unsupervised adaptation techniques in a realistic way? We first empirically analyze existing criteria and demonstrate that they are not very effective for tuning hyper-parameters. Intuitively, a well-trained source classifier should embed target samples of the same class nearby, forming dense neighborhoods in feature space. Based on this assumption, we propose a novel unsupervised validation criterion that measures the density of soft neighborhoods by computing the entropy of the similarity distribution between points. Our criterion is simpler than competing validation methods, yet more effective; it can tune hyper-parameters and the number of training iterations in both image classification and semantic segmentation models. The code used for the paper will be available at url{https://github.com/VisionLearningGroup/SND}.
Semi-supervised learning (SSL) is an effective means to leverage unlabeled data to improve a models performance. Typical SSL methods like FixMatch assume that labeled and unlabeled data share the same label space. However, in practice, unlabeled data can contain categories unseen in the labeled set, i.e., outliers, which can significantly harm the performance of SSL algorithms. To address this problem, we propose a novel Open-set Semi-Supervised Learning (OSSL) approach called OpenMatch. Learning representations of inliers while rejecting outliers is essential for the success of OSSL. To this end, OpenMatch unifies FixMatch with novelty detection based on one-vs-all (OVA) classifiers. The OVA-classifier outputs the confidence score of a sample being an inlier, providing a threshold to detect outliers. Another key contribution is an open-set soft-consistency regularization loss, which enhances the smoothness of the OVA-classifier with respect to input transformations and greatly improves outlier detection. OpenMatch achieves state-of-the-art performance on three datasets, and even outperforms a fully supervised model in detecting outliers unseen in unlabeled data on CIFAR10.
Existing unsupervised domain adaptation methods aim to transfer knowledge from a label-rich source domain to an unlabeled target domain. However, obtaining labels for some source domains may be very expensive, making complete labeling as used in prio r work impractical. In this work, we investigate a new domain adaptation scenario with sparsely labeled source data, where only a few examples in the source domain have been labeled, while the target domain is unlabeled. We show that when labeled source examples are limited, existing methods often fail to learn discriminative features applicable for both source and target domains. We propose a novel Cross-Domain Self-supervised (CDS) learning approach for domain adaptation, which learns features that are not only domain-invariant but also class-discriminative. Our self-supervised learning method captures apparent visual similarity with in-domain self-supervision in a domain adaptive manner and performs cross-domain feature matching with across-domain self-supervision. In extensive experiments with three standard benchmark datasets, our method significantly boosts performance of target accuracy in the new target domain with few source labels and is even helpful on classical domain adaptation scenarios.
Prior work in multi-task learning has mainly focused on predictions on a single image. In this work, we present a new approach for multi-task learning from videos via efficient inter-frame local attention (MILA). Our approach contains a novel inter-f rame attention module which allows learning of task-specific attention across frames. We embed the attention module in a ``slow-fast architecture, where the slower network runs on sparsely sampled keyframes and the light-weight shallow network runs on non-keyframes at a high frame rate. We also propose an effective adversarial learning strategy to encourage the slow and fast network to learn similar features. Our approach ensures low-latency multi-task learning while maintaining high quality predictions. Experiments show competitive accuracy compared to state-of-the-art on two multi-task learning benchmarks while reducing the number of floating point operations (FLOPs) by up to 70%. In addition, our attention based feature propagation method (ILA) outperforms prior work in terms of task accuracy while also reducing up to 90% of FLOPs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا