ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a multiwavelength study of the OH Megamaser galaxy (OHMG) IRAS16399-0937, based on new HST/ACS F814W and H$alpha$+[NII] images and archive data from HST, 2MASS, Spitzer, Herschel and the VLA. This system has a double nucleus, whose norther n (IRAS16399N) and southern (IRAS16399S) components have a projected separation of $sim$ 6 (3.4 kpc) and have previously been identified based on optical spectra as a Low Ionization Nuclear Emission Line Region (LINER) and starburst nucleus, respectively. The nuclei are embedded in a tidally distorted common envelope, in which star formation is mostly heavily obscured. The infrared spectrum is dominated by strong polycyclic aromatic hydrocarbon (PAH), but deep silicate and molecular absorption features are also present, and are strongest in the IRAS16399N nucleus. The 0.435 - 500$mu$m SED was fitted with a model including stellar, ISM and AGN torus components using our new MCMC code, clumpyDREAM. The results indicate that the IRAS16399N contains an AGN (L$_{bol} sim 10^{44}$ ergs/s) deeply embedded in a quasi-spherical distribution of optically-thick clumps with a covering fraction $approx1$. We suggest that these clumps are the source of the OHM emission in IRAS16399-0937. The high torus covering fraction precludes AGN-photoionization as the origin of the LINER spectrum, however, the spectrum is consistent with shocks (v $sim100-200$ km s$^{-1}$). We infer that the $sim10^8$ M$_{odot}$ black-hole in IRAS16399N is accreting at a small fraction ($sim1$%) of its Eddington rate. The low accretion-rate and modest nuclear SFRs suggest that while the gas-rich major merger forming the IRAS16399-0937 system has triggered widespread star formation, the massive gas inflows expected from merger simulations have not yet fully developed.
Mid-infrared (MIR) spectra observed with Gemini/Michelle were used to study the nuclear region of the Compton-thick Seyfert 2 (Sy 2) galaxy Mrk 3 at a spatial resolution of $sim$200 pc. No polycyclic aromatic hydrocarbons (PAHs) emission bands were d etected in the N-band spectrum of Mrk 3. However, intense [Ar III] 8.99 $mu$m, [S IV] 10.5 $mu$m and [Ne II] 12.8 $mu$m ionic emission-lines, as well as silicate absorption feature at 9.7$mu$m have been found in the nuclear extraction ($sim$200 pc). We also present subarcsecond-resolution Michelle N-band image of Mrk 3 which resolves its circumnuclear region. This diffuse MIR emission shows up as a wings towards East-West direction closely aligned with the S-shaped of the Narrow Line Region (NLR) observed at optical [O III]$lambda$5007AA image with Hubble/FOC. The nuclear continuum spectrum can be well represented by a theoretical torus spectral energy distribution (SED), suggesting that the nucleus of Mrk 3 may host a dusty toroidal structure predicted by the unified model of active galactic nucleus (AGN). In addition, the hydrogen column density (N$_H,=,4.8^{+3.3}_{-3.1}times,10^{23}$ cm$^{-2}$) estimated with a torus model for Mrk 3 is consistent with the value derived from X-ray spectroscopy. The torus model geometry of Mrk 3 is similar to that of NGC 3281, both Compton-thick galaxies, confirmed through fitting the 9.7$mu$m silicate band profile. This results might provide further evidence that the silicate-rich dust can be associated with the AGN torus and may also be responsible for the absorption observed at X-ray wavelengths in those galaxies.
We present mid infrared (MIR) spectra of the Seyfert 2 (Sy 2) galaxy NGC 1808, obtained with the Geminis Thermal-Region Camera Spectrograph (T-ReCS) at a spatial resolution of 26 pc. The high spatial resolution allowed us to detect bright polycyclic aromatic hydrocarbons (PAHs) emissions at 8.6micron and 11.3micron in the galaxy centre (26 pc) up to a radius of 70 pc from the nucleus. The spectra also present [Ne ii]12.8micron ionic lines, and H2 S(2)12.27micron molecular gas line. We found that the PAHs profiles are similar to Peeterss A class, with the line peak shifted towards the blue. The differences in the PAH line profiles also suggests that the molecules in the region located 26 pc NE of the nucleus are more in the neutral than in the ionised state, while at 26 pc SW of the nucleus, the molecules are mainly in ionised state. After removal of the underlying galaxy contribution, the nuclear spectrum can be represented by a Nenkovas clumpy torus model, indicating that the nucleus of NGC 1808 hosts a dusty toroidal structure with an angular cloud distribution of sigma = 70degree, observers view angle i = 90degree, and an outer radius of R0 = 0.55 pc. The derived column density along the line of sight is NH = 1.5 x 10^24 cm-2, which is sufficient to block the hard radiation from the active nucleus, and would explain the presence of PAH molecules near to the NGC 1808s active nucleus.
We present mid infrared (Mid-IR) spectra of the Compton-thick Seyfert 2 galaxy NGC,3281, obtained with the Thermal-Region Camera Spectrograph (T-ReCS) at the Gemini South telescope. The spectra present a very deep silicate absorption at 9.7,$mu$m, an d [S{sc,iv]},10.5,$mu$m and [Ne{sc,ii]},12.7,$mu$m ionic lines, but no evidence of PAH emission. We find that the nuclear optical extinction is in the range 24 $leq$ A$_{V}$ $leq$ 83,mag. A temperature T = 300,K was found for the black-body dust continuum component of the unresolved 65,pc nucleus and at 130,pc SE, while the region at 130,pc reveals a colder temperature (200,K). We describe the nuclear spectrum of NGC,3281 using a clumpy torus model that suggests that the nucleus of this galaxy hosts a dusty toroidal structure. According to this model, the ratio between the inner and outer radius of the torus in NGC,3281 is $R_0/R_d$ = 20, with {bf 14} clouds in the equatorial radius with optical depth of $tau_{V}$ = 40,mag. We would be looking in the direction of the torus equatorial radius ($i$ = {bf 60$^{circ}$}), which has outer radius of R$_{0},sim$ 11,pc. The column density is N$_{H}approx$,{bf 1.2},$times,10^{24},cm^{-2}$ and iron K$alpha$ equivalent width ($approx$ 0.5 - 1.2,keV) are used to check the torus geometry. Our findings indicate that the X-ray absorbing column density, which classifies NGC,3281 as a Compton-thick source, may also be responsible for the absorption at 9.7,$mu$m providing strong evidence that the silicate dust responsible for this absorption can be located in the AGN torus.
We study the Polycyclic Aromatic Hydrocarbons (PAH) bands, ionic emission lines, and Mid-infrared continuum properties, in a sample of 171 emission line galaxies taken from literature plus 15 new active galactic nuclei (AGN) Spitzer spectra. The cont inuum shape steeply rises for longer wavelengths and can be fitted with a warm blackbody distribution of T=150-300K. The brightest PAH spectral bands (6.2, 7.7, 8.6, 11.3, and 12.7$mu$m) and the forbidden emission lines of [Si II] 34.8$mu$m, [Ar II] 6.9, [S III] 18.7 and 33.4 were detected in all the Starbursts and in ~80% of the Seyfert~2. Taking under consideration only the PAH bands at 7.7$mu$m, 11.3$mu$m, and 12.7$mu$m we find they are present in ~80% of the Seyfert 1, while only half of this type of activity show the 6.2$mu$m and 8.6 PAH bands. The observed intensities ratios for neutral and ionized PAHs (6.2/7.7 x 11.3/7.7) were compared to theoretical intensity ratios, showing that AGNs have higher ionization fraction and larger PAH (> 180 carbon atoms) than SB galaxies. The ratio between the ionized (7.7) and the neutral PAH bands (8.6 and 11.3) are distributed over different ranges for AGNs and SB galaxies, suggesting that these ratios could depend on the ionization fraction, as well as on the hardness of the radiation field. The ratio between the 7.7 and 11.3 bands is nearly constant with the increase of [Ne III]15.5/[Ne II], indicating that the fraction of ionized to neutral PAH bands does not depend on the hardness of the radiation field. The equivalent width of both PAH features show the same dependence with [Ne III]/[Ne II], suggesting that the PAH, emitting either ionized (7.7) or neutral (11.3) bands, may be destroyed with the increase of the hardness of the radiation field.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا