ترغب بنشر مسار تعليمي؟ اضغط هنا

Polycyclic Aromatic Hydrocarbon in the Central Region of the Seyfert 2 Galaxy NGC1808

97   0   0.0 ( 0 )
 نشر من قبل Dinalva Sales Aires
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present mid infrared (MIR) spectra of the Seyfert 2 (Sy 2) galaxy NGC 1808, obtained with the Geminis Thermal-Region Camera Spectrograph (T-ReCS) at a spatial resolution of 26 pc. The high spatial resolution allowed us to detect bright polycyclic aromatic hydrocarbons (PAHs) emissions at 8.6micron and 11.3micron in the galaxy centre (26 pc) up to a radius of 70 pc from the nucleus. The spectra also present [Ne ii]12.8micron ionic lines, and H2 S(2)12.27micron molecular gas line. We found that the PAHs profiles are similar to Peeterss A class, with the line peak shifted towards the blue. The differences in the PAH line profiles also suggests that the molecules in the region located 26 pc NE of the nucleus are more in the neutral than in the ionised state, while at 26 pc SW of the nucleus, the molecules are mainly in ionised state. After removal of the underlying galaxy contribution, the nuclear spectrum can be represented by a Nenkovas clumpy torus model, indicating that the nucleus of NGC 1808 hosts a dusty toroidal structure with an angular cloud distribution of sigma = 70degree, observers view angle i = 90degree, and an outer radius of R0 = 0.55 pc. The derived column density along the line of sight is NH = 1.5 x 10^24 cm-2, which is sufficient to block the hard radiation from the active nucleus, and would explain the presence of PAH molecules near to the NGC 1808s active nucleus.



قيم البحث

اقرأ أيضاً

131 - E. R. Micelotta 2009
Context: PAHs appear to be an ubiquitous interstellar dust component but the effects of shocks waves upon them have never been fully investigated. Aims: To study the effects of energetic (~0.01-1 keV) ion (H, He and C) and electron collisions on PAHs in interstellar shock waves.Methods: We calculate the ion-PAH and electron-PAH nuclear and electronic interactions, above the threshold for carbon atom loss from a PAH, in 50-200 km/s shock waves in the warm intercloud medium. Results: Interstellar PAHs (Nc = 50) do not survive in shocks with velocities greater than 100 km/s and larger PAHs (Nc = 200) are destroyed for shocks with velocities greater/equal to 125 km/s. For shocks in the ~75 - 100 km/s range, where destruction is not complete, the PAH structure is likely to be severely denatured by the loss of an important fraction (20-40%) of the carbon atoms. We derive typical PAH lifetimes of the order of a few x10^8 yr for the Galaxy. These results are robust and independent of the uncertainties in some key parameters that have yet to be well-determined experimentally. Conclusions: The observation of PAH emission in shock regions implies that that emission either arises outside the shocked region or that those regions entrain denser clumps that, unless they are completely ablated and eroded in the shocked gas, allow dust and PAHs to survive in extreme environments.
191 - E. R. Micelotta 2009
Context: PAHs are thought to be a ubiquitous and important dust component of the interstellar medium. However, the effects of their immersion in a hot (post-shock) gas have never before been fully investigated. Aims: We study the effects of energetic ion and electron collisions on PAHs in the hot post-shock gas behind interstellar shock waves. Methods: We calculate the ion-PAH and electron-PAH nuclear and electronic interactions, above the carbon atom loss threshold, in H II regions and in the hot post-shock gas, for temperatures ranging from 10^3 to 10^8 K. Results: PAH destruction is dominated by He collisions at low temperatures (T < 3x10^4 K), and by electron collisions at higher temperatures. Smaller PAHs are destroyed faster for T < 10^6 K, but the destruction rates are roughly the same for all PAHs at higher temperatures. The PAH lifetime in a tenuous hot gas (n_H ~ 0.01 cm^-3, T ~ 10^7 K), typical of the coronal gas in galactic outflows, is found to be about thousand years, orders of magnitude shorter than the typical lifetime of such objects. Conclusions: In a hot gas, PAHs are principally destroyed by electron collisions and not by the absorption of X-ray photons from the hot gas. The resulting erosion of PAHs occurs via C_2 loss from the periphery of the molecule, thus preserving the aromatic structure. The observation of PAH emission from a million degree, or more, gas is only possible if the emitting PAHs are ablated from dense, entrained clumps that have not yet been exposed to the full effect of the hot gas.
152 - E. R. Micelotta (1 , 2 , 3 2010
Context: Cosmic rays are present in almost all phases of the ISM. PAHs and cosmic rays represent an abundant and ubiquitous component of the interstellar medium. However, the interaction between them has never before been fully investigated. Aims: To study the effects of cosmic ray ion (H, He, CNO and Fe-Co-Ni) and electron bombardment of PAHs in galactic and extragalactic environments. Methods: We calculate the nuclear and electronic interactions for collisions between PAHs and cosmic ray ions and electrons with energies between 5 MeV/nucleon and 10 GeV, above the threshold for carbon atom loss, in normal galaxies, starburst galaxies and cooling flow galaxy clusters. Results: The timescale for PAH destruction by cosmic ray ions depends on the electronic excitation energy Eo and on the amount of energy available for dissociation. Small PAHs are destroyed faster, with He and the CNO group being the more effective projectiles. For electron collisions, the lifetime is independent of the PAH size and varies with the threshold energy To. Conclusions: Cosmic rays process the PAHs in diffuse clouds, where the destruction due to interstellar shocks is less efficient. In the hot gas filling galactic halos, outflows of starburst galaxies and intra-cluster medium, PAH destruction is dominated by collisions with thermal ions and electrons, but this mechanism is ineffective if the molecules are in denser cloudlets and isolated from the hot gas. Cosmic rays can access the denser clouds and together with X-rays will set the lifetime of those protected PAHs. This limits the use of PAHs as a`dye for tracing the presence of cold entrained material.
We examine polycyclic aromatic hydrocarbon (PAH), dust and atomic/molecular emission toward the Galactic bulge using Spitzer Space Telescope observations of four fields: C32, C35, OGLE and NGC 6522. These fields are approximately centered on (l, b) = (0.0{deg}, 1.0{deg}), (0.0{deg}, -1.0{deg}), (0.4{deg}, -2.1{deg}) and (1.0{deg}, -3.8{deg}), respectively. Far-infrared photometric observations complement the Spitzer/IRS spectroscopic data and are used to construct spectral energy distributions. We find that the dust and PAH emission are exceptionally similar between C32 and C35 overall, in part explained due to their locations---they reside on or near boundaries of a 7 Myr-old Galactic outflow event and are partly shock-heated. Within the C32 and C35 fields, we identify a region of elevated H{alpha} emission that is coincident with elevated fine-structure and [O IV] line emission and weak PAH feature strengths. We are likely tracing a transition zone of the outflow into the nascent environment. PAH abundances in these fields are slightly depressed relative to typical ISM values. In the OGLE and NGC 6522 fields, we observe weak features on a continuum dominated by zodiacal dust. SED fitting indicates that thermal dust grains in C32 and C35 have comparable temperatures to those of diffuse, high-latitude cirrus clouds. Little variability is detected in the PAH properties between C32 and C35, indicating that a stable population of PAHs dominates the overall spectral appearance. In fact, their PAH features are exceptionally similar to that of the M82 superwind, emphasizing that we are probing a local Galactic wind environment.
83 - G. J. Bendo , N. Lu , A. Zijlstra 2020
We have examined polycyclic aromatic hydrocarbon (PAH) excitation in a sample of 25 nearby face-on spiral galaxies using the ratio of mid-infrared PAH emission to dust mass. Within 11 of the galaxies, we found that the PAH excitation was straightforw ardly linked to ultraviolet or mid-infrared star formation tracers, which, along with other results studying the relation of PAH emission to star formation, indicates that the PAHs are most strongly excited in dusty shells around the star forming regions. Within another 5 galaxies, the PAH emission is enhanced around star forming regions only at specific galactocentric radii. In 6 more galaxies, PAH excitation is more strongly correlated with the evolved stellar populations as traced by 3.6 micron emission. The results for the remaining 3 galaxies were ambiguous. The radial gradients of the PAH/dust ratios were generally not linked to log(O/H) gradients except when the log(O/H) gradients were relatively steep. Galaxies in which PAHs were excited by evolved stars had relatively high far-ultraviolet to mid-infrared ratios, indicating that variations in the link between PAH excitation and different stellar populations is linked to changes in dust attenuation within galaxies. Alternately, differences in morphology could make it more likely that PAHs are excited by evolved stars, as 5 of the 6 galaxies where this occurs are late-type flocculent spiral galaxies. These heterogeneous results demonstrate the complexity of describing PAH excitation and have broad implications for using PAH emission as a star formation tracer as well as for modelling dust emission and radiative transfer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا