ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a new generation of substellar atmosphere and evolution models, appropriate for application to studies of L, T, and Y-type brown dwarfs and self-luminous extrasolar planets. The atmosphere models describe the expected temperature-pressure profiles and emergent spectra of atmospheres in radiative-convective equilibrium with effective temperatures and gravities within the ranges $200le T_{rm eff}le2400,rm K$ and $2.5le log g le 5.5$. These ranges encompass masses from about 0.5 to 85 Jupiter masses for a set of metallicities ($[{rm M/H}] = -0.5$ to $+0.5$), C/O ratios (from 0.5 to 1.5 times that of solar), and ages. The evolution tables describe the cooling of these substellar objects through time. These models expand the diversity of model atmospheres currently available, notably to cooler effective temperatures and greater ranges in C/O. Notable improvements from past such models include updated opacities and atmospheric chemistry. Here we describe our modeling approach and present our initial tranche of models for cloudless, chemical equilibrium atmospheres. We compare the modeled spectra, photometry, and evolution to various datasets.
The binary brown dwarf WISE J104915.57$-$531906.1 (also Luhman 16AB), composed of a late L and early T dwarf, is a prototypical L/T transition flux reversal binary located at only 2 pc distance. Luhman 16B is a known variable whose light curves evolv e rapidly. We present spatially resolved spectroscopic time-series of Luhman 16A and B covering 6.5 h using HST/WFC3 at 1.1 to 1.66 $mu$m. The small, count-dependent variability of Luhman 16A at the beginning of the observations likely stems from instrumental systematics; Luhman 16A appears non-variable above $approx$0.4%. Its spectrum is well fit by a single cloud layer with intermediate cloud thickness (f_sed=2, Teff=1200 K). Luhman 16B varies at all wavelengths with peak-to-valley amplitudes of 7-11%. The amplitude and light curve shape changes over only one rotation period. The lowest relative amplitude is found in the deep water absorption band at 1.4 $mu$m, otherwise it mostly decreases gradually from the blue to the red edge of the spectrum. This is very similar to the other two known highly variable early T dwarfs. A two-component cloud model accounts for most of the variability, although small deviations are seen in the water absorption band. We fit the mean spectrum and relative amplitudes with a linear combination of two models of a warm, thinner cloud (Teff=1300 K, fsed=3) and a cooler, thicker cloud (Teff=1000-1100 K, f_sed=1), assuming out-of-equilibrium atmospheric chemistry. A cloud as for Luhman 16A but with holes cannot reproduce the variability of Luhman 16B, indicating more complex cloud evolution through the L/T transition. The projected separation of the binary has decreased by $approx$0.3 in 8 months.
During the first-light run of the Gemini Planet Imager (GPI) we obtained K-band spectra of exoplanets HR 8799 c and d. Analysis of the spectra indicates that planet d may be warmer than planet c. Comparisons to recent patchy cloud models and previous ly obtained observations over multiple wavelengths confirm that thick clouds combined with horizontal variation in the cloud cover generally reproduce the planets spectral energy distributions. When combined with the 3 to 4 um photometric data points, the observations provide strong constraints on the atmospheric methane content for both planets. The data also provide further evidence that future modeling efforts must include cloud opacity, possibly including cloud holes, disequilibrium chemistry, and super-solar metallicity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا