ترغب بنشر مسار تعليمي؟ اضغط هنا

Telecommunication service providers have to guarantee acceptable speech quality during a phone call to avoid a negative impact on the users quality of experience. Currently, there are different speech quality assessment methods. ITU-T Recommendation G.107 describes the E-model algorithm, which is a computational model developed for network planning purposes focused on narrowband (NB) networks. Later, ITU-T Recommendations G.107.1 and G.107.2 were developed for wideband (WB) and fullband (FB) networks. These algorithms use different impairment factors, each one related to different speech communication steps. However, the NB, WB, and FB E-model algorithms do not consider wireless techniques used in these networks, such as Multiple-Input-Multiple-Output (MIMO) systems, which are used to improve the communication system robustness in the presence of different types of wireless channel degradation. In this context, the main objective of this study is to propose a general methodology to incorporate wireless network parameters into the NB and WB E-model algorithms. To accomplish this goal, MIMO and wireless channel parameters are incorporated into the E-model algorithms, specifically into the $I_{e,eff}$ and $I_{e,eff,WB}$ impairment factors. For performance validation, subjective tests were carried out, and the proposed methodology reached a Pearson correlation coefficient (PCC) and a root mean square error (RMSE) of $0.9732$ and $0.2351$, respectively. It is noteworthy that our proposed methodology does not affect the rest of the E-model input parameters, and it intends to be useful for wireless network planning in speech communication services.
Despite the immense progress in the recent years, efficient solutions for monitoring remote areas are still missing today. This is especially notable in the context of versatile maritime and offshore use cases, owing to a broader span of operating re gions and a lack of radio network infrastructures. In this article, we address the noted challenge by delivering a conceptual solution based on the convergence of three emerging technologies -- unmanned aerial vehicles (UAVs), battery-less sensors, and wireless powered communication networks (WPCNs). Our contribution offers a systematic description of the ecosystem related to the proposed solution by identifying its key actors and design dimensions together with the relevant resources and performance metrics. A system-level modeling-based evaluation of an illustrative scenario delivers deeper insights into the considered operation and the associated trade-offs. Further, unresolved challenges and perspective directions are underpinned for a subsequent study.
In this paper, we propose a global digital platform to avoid and combat epidemics by providing relevant real-time information to support selective lockdowns. It leverages the pervasiveness of wireless connectivity while being trustworthy and secure. The proposed system is conceptualized to be decentralized yet federated, based on ubiquitous public systems and active citizen participation. Its foundations lie on the principle of informational self-determination. We argue that only in this way it can become a trustworthy and legitimate public good infrastructure for citizens by balancing the asymmetry of the different hierarchical levels within the federated organization while providing highly effective detection and guiding mitigation measures towards graceful lockdown of the society. To exemplify the proposed system, we choose the remote patient monitoring as use case. In which, the integration of distributed ledger technologies with narrowband IoT technology is evaluated considering different number of endorsed peers. An experimental proof of concept setup is used to evaluate the performance of this integration, in which the end-to-end latency is slightly increased when a new endorsed element is added. However, the system reliability, privacy, and interoperability are guaranteed. In this sense, we expect active participation of empowered citizens to supplement the more usual top-down management of epidemics.
Massive multiple-input multiple-output (MIMO) and non-orthogonal multiple access (NOMA) are two key techniques for enabling massive connectivity in future wireless networks. A massive MIMO-NOMA system can deliver remarkable spectral improvements and low communication latency. Nevertheless, the uncontrollable stochastic behavior of the wireless channels can still degrade its performance. In this context, intelligent reflecting surface (IRS) has arisen as a promising technology for smartly overcoming the harmful effects of the wireless environment. The disruptive IRS concept of controlling the propagation channels via software can provide attractive performance gains to the communication networks, including higher data rates, improved user fairness, and, possibly, higher energy efficiency. In this article, in contrast to the existing literature, we demonstrate the main roles of IRSs in MIMO-NOMA systems. Specifically, we identify and perform a comprehensive discussion of the main performance gains that can be achieved in IRS-assisted massive MIMO-NOMA (IRS-NOMA) networks. We outline exciting futuristic use case scenarios for IRS-NOMA and expose the main related challenges and future research directions. Furthermore, throughout the article, we support our in-depth discussions with representative numerical results.
Reconfigurable intelligent surfaces (RISs) have been recently considered as one of the emerging technologies for future communication systems by leveraging the tuning capabilities of their reflecting elements. In this paper, we investigate the potent ial of an RIS-based architecture for uplink sensor data transmission in an ultra-reliable low-latency communication (URLLC) context. In particular, we propose an RIS-aided grant-free access scheme for an industrial control scenario, aiming to exploit diversity and achieve improved reliability performance. We consider two different resource allocation schemes for the uplink transmissions, i.e., dedicated and shared slot assignment, and three different receiver types, namely the zero-forcing, the minimum mean squared error (MMSE), and the MMSE-successive interference cancellation receivers. Our extensive numerical evaluation in terms of outage probability demonstrates the gains of our approach in terms of reliability, resource efficiency, and capacity and for different configurations of the RIS properties. An RIS-aided grant-free access scheme combined with advanced receivers is shown to be a well-suited option for uplink URLLC.
During the last few years, intensive research efforts are being done in the field of brain interfaces to extract neuro-information from the signals representing neuronal activities in the human brain. A recent development of these interfaces is capab le of direct communication between animals brains, enabling direct brain-to-brain communication. Although these results are new and the experimental scenario simple, the fast development in neuroscience, and information and communication technologies indicate the potential of new scenarios for wireless communications between brains. Depending of the specific kind of neuro-activity to be communicated, the brain-to-brain link shall follow strict requirements of high data rates, low-latency, and reliable communication. In this paper we highlight key beyond 5G technologies that potentially will support this promising approach.
During the last few years, intensive research efforts are being done in the field of brain interfaces to extract neuro-information from the signals representing neuronal activities in the human brain. Recent development of brain-to-computer interface s support direct communication between animals brains, enabling direct brain-to-brain communication. Although these results are based on binary communication with relaxed requirements of latency and throughput, the fast development in neuro-science technologies indicates potential new scenarios for wireless communications between brains. In this paper we highlight technologies that are being used today to enable brain-to-brain communication and propose potential wireless communication architectures and requirements for future scenarios.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا