ترغب بنشر مسار تعليمي؟ اضغط هنا

The Bohr Hamiltonian describing the collective motion of atomic nuclei is modified by allowing the mass to depend on the nuclear deformation. Exact analytical expressions are derived for spectra and wave functions in the case of a gamma-unstable Davi dson potential, using techniques of supersymmetric quantum mechanics. Numerical results in the Xe-Ba region are discussed.
The energies of subsets of excited 0+ states in geometric collective models are investigated and found to exhibit intriguing regularities. In models with an infinite square well potential, it is found that a single formula, dependent on only the numb er of dimensions, describes a subset of 0+ states. The same behavior of a subset of 0+ states is seen in the large boson number limit of the Interacting Boson Approximation (IBA) model near the critical point of a first order phase transition, in contrast to the fact that these 0+ state energies exhibit a harmonic behavior in all three limiting symmetries of the IBA. Finally, the observed regularities in 0+ energies are analyzed in terms of the underlying group theoretical framework of the different models.
Shape/phase transitions in atomic nuclei have first been discovered in the framework of the Interacting Boson Approximation (IBA) model. Critical point symmetries appropriate for nuclei at the transition points have been introduced as special solutio ns of the Bohr Hamiltonian, stirring the introduction of additional new solutions describing wide ranges of nuclei. The complementarity of the IBA and geometrical approaches will be demonstrated by three examples. First, it will be shown that specific special solutions of the Bohr Hamiltonian correspond to the borders of the critical region of the IBA. Second, it will be demonstrated that the distinct patterns exhibited in different transitional regions by the experimental energy staggering in gamma-bands can be reproduced both by the IBA and by special solutions of the Bohr Hamiltonian. Third, a first attempt to obtain a IBA SU(3) level scheme from a special solution of the Bohr Hamiltonian will be presented.
A remarkably simple regularity in the energies of 0+ states in a broad class of collective models is discussed. A single formula for all 0+ states in flat-bottomed infinite potentials that depends only on the number of dimensions and a simpler expres sion applicable to all three IBA symmetries in the large boson number limit are presented. Finally, a connection between the energy expression for 0+ states given by the X(5) model and the predictions of the IBA near the critical point is explored.
A simple, empirical signature of a first order phase transition in atomic nuclei is presented, the ratio of the energy of the 6+ level of the ground state band to the energy of the first excited 0+ state. This ratio provides an effective order parame ter which is not only easy to measure, but also distinguishes between first and second order phase transitions and takes on a special value in the critical region. Data in the Nd-Dy region show these characteristics. In addition, a repeating degeneracy between alternate yrast states and successive excited 0+ states is found to correspond closely to the line of a first order phase transition in the framework of the Interacting Boson Approximation (IBA) model in the large N limit, pointing to a possible underlying symmetry in the critical region.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا