ترغب بنشر مسار تعليمي؟ اضغط هنا

While task-specific finetuning of pretrained networks has led to significant empirical advances in NLP, the large size of networks makes finetuning difficult to deploy in multi-task, memory-constrained settings. We propose diff pruning as a simple ap proach to enable parameter-efficient transfer learning within the pretrain-finetune framework. This approach views finetuning as learning a task-specific diff vector that is applied on top of the pretrained parameter vector, which remains fixed and is shared across different tasks. The diff vector is adaptively pruned during training with a differentiable approximation to the L0-norm penalty to encourage sparsity. Diff pruning becomes parameter-efficient as the number of tasks increases, as it requires storing only the nonzero positions and weights of the diff vector for each task, while the cost of storing the shared pretrained model remains constant. It further does not require access to all tasks during training, which makes it attractive in settings where tasks arrive in stream or the set of tasks is unknown. We find that models finetuned with diff pruning can match the performance of fully finetuned baselines on the GLUE benchmark while only modifying 0.5% of the pretrained models parameters per task.
Despite their empirical success, neural networks still have difficulty capturing compositional aspects of natural language. This work proposes a simple data augmentation approach to encourage compositional behavior in neural models for sequence-to-se quence problems. Our approach, SeqMix, creates new synthetic examples by softly combining input/output sequences from the training set. We connect this approach to existing techniques such as SwitchOut and word dropout, and show that these techniques are all approximating variants of a single objective. SeqMix consistently yields approximately 1.0 BLEU improvement on five different translation datasets over strong Transformer baselines. On tasks that require strong compositional generalization such as SCAN and semantic parsing, SeqMix also offers further improvements.
158 - Saining Xie , Jiatao Gu , Demi Guo 2020
Arguably one of the top success stories of deep learning is transfer learning. The finding that pre-training a network on a rich source set (eg., ImageNet) can help boost performance once fine-tuned on a usually much smaller target set, has been inst rumental to many applications in language and vision. Yet, very little is known about its usefulness in 3D point cloud understanding. We see this as an opportunity considering the effort required for annotating data in 3D. In this work, we aim at facilitating research on 3D representation learning. Different from previous works, we focus on high-level scene understanding tasks. To this end, we select a suite of diverse datasets and tasks to measure the effect of unsupervised pre-training on a large source set of 3D scenes. Our findings are extremely encouraging: using a unified triplet of architecture, source dataset, and contrastive loss for pre-training, we achieve improvement over recent best results in segmentation and detection across 6 different benchmarks for indoor and outdoor, real and synthetic datasets -- demonstrating that the learned representation can generalize across domains. Furthermore, the improvement was similar to supervised pre-training, suggesting that future efforts should favor scaling data collection over more detailed annotation. We hope these findings will encourage more research on unsupervised pretext task design for 3D deep learning.
It is important to design compact language models for efficient deployment. We improve upon recent advances in both the language modeling domain and the model-compression domain to construct parameter and computation efficient language models. We use an efficient transformer-based architecture with adaptive embedding and softmax, differentiable non-parametric cache, Hebbian softmax, knowledge distillation, network pruning, and low-bit quantization. In this paper, we provide the winning solution to the NeurIPS 2019 MicroNet Challenge in the language modeling track. Compared to the baseline language model provided by the MicroNet Challenge, our model is 90 times more parameter-efficient and 36 times more computation-efficient while achieving the required test perplexity of 35 on the Wikitext-103 dataset. We hope that this work will aid future research into efficient language models, and we have released our full source code at https://github.com/mit-han-lab/neurips-micronet.
As modern deep networks become more complex, and get closer to human-like capabilities in certain domains, the question arises of how the representations and decision rules they learn compare to the ones in humans. In this work, we study representati ons of sentences in one such artificial system for natural language processing. We first present a diagnostic test dataset to examine the degree of abstract composable structure represented. Analyzing performance on these diagnostic tests indicates a lack of systematicity in the representations and decision rules, and reveals a set of heuristic strategies. We then investigate the effect of the training distribution on learning these heuristic strategies, and study changes in these representations with various augmentations to the training set. Our results reveal parallels to the analogous representations in people. We find that these systems can learn abstract rules and generalize them to new contexts under certain circumstances -- similar to human zero-shot reasoning. However, we also note some shortcomings in this generalization behavior -- similar to human judgment errors like belief bias. Studying these parallels suggests new ways to understand psychological phenomena in humans as well as informs best strategies for building artificial intelligence with human-like language understanding.
An important challenge for human-like AI is compositional semantics. Recent research has attempted to address this by using deep neural networks to learn vector space embeddings of sentences, which then serve as input to other tasks. We present a new dataset for one such task, `natural language inference (NLI), that cannot be solved using only word-level knowledge and requires some compositionality. We find that the performance of state of the art sentence embeddings (InferSent; Conneau et al., 2017) on our new dataset is poor. We analyze the decision rules learned by InferSent and find that they are consistent with simple heuristics that are ecologically valid in its training dataset. Further, we find that augmenting training with our dataset improves test performance on our dataset without loss of performance on the original training dataset. This highlights the importance of structured datasets in better understanding and improving AI systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا