ترغب بنشر مسار تعليمي؟ اضغط هنا

We prove a duality relation and an integration by parts formula for fractional operators with a general analytical kernel. Based on these basic results, we are able to prove a new Gronwalls inequality and continuity and differentiability of solutions of control differential equations. This allow us to obtain a weak version of Pontryagins maximum principle. Moreover, our approach also allow us to consider mixed problems with both integer and fractional order operators and derive necessary optimality conditions for isoperimetric variational problems and other problems of the calculus of variations.
In this paper, we study an epidemic model with Atangana-Baleanu-Caputo (ABC) fractional derivatives. We obtain a special solution using an iterative scheme via Laplace transformation. Uniqueness and existence of solution using the Banach fixed point theorem are studied. A detailed analysis of the stability of the special solution is presented. Finally, our generalized model in the ABC derivative sense is solved numerically by the Adams-Bashforth-Moulton method.
We consider distributed-order non-local fractional optimal control problems with controls taking values on a closed set and prove a strong necessary optimality condition of Pontryagin type. The possibility that admissible controls are subject to poin twise constraints is new and requires more sophisticated techniques to include a maximality condition. We start by proving results on continuity of solutions due to needle-like control perturbations. Then, we derive a differentiability result on the state solutions with respect to the perturbed trajectories. We end by stating and proving the Pontryagin maximum principle for distributed-order fractional optimal control problems, illustrating its applicability with an example.
The calculus of variations is a field of mathematical analysis born in 1687 with Newtons problem of minimal resistance, which is concerned with the maxima or minima of integral functionals. Finding the solution of such problems leads to solving the a ssociated Euler-Lagrange equations. The subject has found many applications over the centuries, e.g., in physics, economics, engineering and biology. Up to this moment, however, the theory of the calculus of variations has been confined to Newtons approach to calculus. As in many applications negative values of admissible functions are not physically plausible, we propose here to develop an alternative calculus of variations based on the non-Newtonian approach first introduced by Grossman and Katz in the period between 1967 and 1970, which provides a calculus defined, from the very beginning, for positive real numbers only, and it is based on a (non-Newtonian) derivative that permits one to compare relative changes between a dependent positive variable and an independent variable that is also positive. In this way, the non-Newtonian calculus of variations we introduce here provides a natural framework for problems involving functions with positive images. Our main result is a first-order optimality condition of Euler-Lagrange type. The new calculus of variations complements the standard one in a nontrivial/multiplicative way, guaranteeing that the solution remains in the physically admissible positive range. An illustrative example is given.
We apply optimal control theory to a generalized SEIR-type model. The proposed system has three controls, representing social distancing, preventive means, and treatment measures to combat the spread of the COVID-19 pandemic. We analyze such optimal control problem with respect to real data transmission in Italy. Our results show the appropriateness of the model, in particular with respect to the number of quarantined/hospitalized (confirmed and infected) and recovered individuals. Considering the Pontryagin controls, we show how in a perfect world one could have drastically diminish the number of susceptible, exposed, infected, quarantined/hospitalized, and death individuals, by increasing the population of insusceptible/protected.
The main aim of the present work is to study and analyze a reaction-diffusion fractional version of the SIR epidemic mathematical model by means of the non-local and non-singular ABC fractional derivative operator with complete memory effects. Existe nce and uniqueness of solution for the proposed fractional model is proved. Existence of an optimal control is also established. Then, necessary optimality conditions are derived. As a consequence, a characterization of the optimal control is given. Lastly, numerical results are given with the aim to show the effectiveness of the proposed control strategy, which provides significant results using the AB fractional derivative operator in the Caputo sense, comparing it with the classical integer one. The results show the importance of choosing very well the fractional characterization of the order of the operators.
We propose a qualitative analysis of a recent fractional-order COVID-19 model. We start by showing that the model is mathematically and biologically well posed. Then, we give a proof on the global stability of the disease free equilibrium point. Fina lly, some numerical simulations are performed to ensure stability and convergence of the disease free equilibrium point.
In this work, we derive a nonstandard finite difference scheme for the SICA (Susceptible-Infected-Chronic-AIDS) model and analyze the dynamical properties of the discretized system. We prove that the discretized model is dynamically consistent with t he continuous, maintaining the essential properties of the standard SICA model, namely, the positivity and boundedness of the solutions, equilibrium points, and their local and global stability.
We propose and study a new mathematical model of the human immunodeficiency virus (HIV). The main novelty is to consider that the antibody growth depends not only on the virus and on the antibodies concentration but also on the uninfected cells conce ntration. The model consists of five nonlinear differential equations describing the evolution of the uninfected cells, the infected ones, the free viruses, and the adaptive immunity. The adaptive immune response is represented by the cytotoxic T-lymphocytes (CTL) cells and the antibodies with the growth function supposed to be trilinear. The model includes two kinds of treatments. The objective of the first one is to reduce the number of infected cells, while the aim of the second is to block free viruses. Firstly, the positivity and the boundedness of solutions are established. After that, the local stability of the disease free steady state and the infection steady states are characterized. Next, an optimal control problem is posed and investigated. Finally, numerical simulations are performed in order to show the behavior of solutions and the effectiveness of the two incorporated treatments via an efficient optimal control strategy.
We prove Cauchys formula for repeated integration on time scales. The obtained relation gives rise to new notions of fractional integration and differentiation on arbitrary nonempty closed sets.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا