ترغب بنشر مسار تعليمي؟ اضغط هنا

This contribution deals with identification of fractional-order dynamical systems. System identification, which refers to estimation of process parameters, is a necessity in control theory. Real processes are usually of fractional order as opposed to the ideal integral order models. A simple and elegant scheme of estimating the parameters for such a fractional order process is proposed. This method employs fractional calculus theory to find equations relating the parameters that are to be estimated, and then estimates the process parameters after solving the simultaneous equations. The said simultaneous equations are generated and updated using particle swarm optimization (PSO) technique, the fitness function being the sum of squared deviations from the actual set of observations. The data used for the calculations are intentionally corrupted to simulate real-life conditions. Results show that the proposed scheme offers a very high degree of accuracy even for erroneous data.
The paper presents an exponential pheromone deposition approach to improve the performance of classical Ant System algorithm which employs uniform deposition rule. A simplified analysis using differential equations is carried out to study the stabili ty of basic ant system dynamics with both exponential and constant deposition rules. A roadmap of connected cities, where the shortest path between two specified cities are to be found out, is taken as a platform to compare Max-Min Ant System model (an improved and popular model of Ant System algorithm) with exponential and constant deposition rules. Extensive simulations are performed to find the best parameter settings for non-uniform deposition approach and experiments with these parameter settings revealed that the above approach outstripped the traditional one by a large extent in terms of both solution quality and convergence time.
This contribution deals with identification of fractional-order dynamical systems. System identification, which refers to estimation of process parameters, is a necessity in control theory. Real processes are usually of fractional order as opposed to the ideal integral order models. A simple and elegant scheme of estimating the parameters for such a fractional order process is proposed. This method employs fractional calculus theory to find equations relating the parameters that are to be estimated, and then estimates the process parameters after solving the simultaneous equations. The data used for the calculations are intentionally corrupted to simulate real-life conditions. Results show that the proposed scheme offers a very high degree of accuracy even for erroneous data.
This article presents a unique design for a parser using the Ant Colony Optimization algorithm. The paper implements the intuitive thought process of human mind through the activities of artificial ants. The scheme presented here uses a bottom-up app roach and the parsing program can directly use ambiguous or redundant grammars. We allocate a node corresponding to each production rule present in the given grammar. Each node is connected to all other nodes (representing other production rules), thereby establishing a completely connected graph susceptible to the movement of artificial ants. Each ant tries to modify this sentential form by the production rule present in the node and upgrades its position until the sentential form reduces to the start symbol S. Successful ants deposit pheromone on the links that they have traversed through. Eventually, the optimum path is discovered by the links carrying maximum amount of pheromone concentration. The design is simple, versatile, robust and effective and obviates the calculation of the above mentioned sets and precedence relation tables. Further advantages of our scheme lie in i) ascertaining whether a given string belongs to the language represented by the grammar, and ii) finding out the shortest possible path from the given string to the start symbol S in case multiple routes exist.
Of the many definitions for fractional order differintegral, the Grunwald-Letnikov definition is arguably the most important one. The necessity of this definition for the description and analysis of fractional order systems cannot be overstated. Unfo rtunately, the Fractional Order Differential Equation (FODE) describing such a systems, in its original form, highly sensitive to the effects of random noise components inevitable in a natural environment. Thus direct application of the definition in a real-life problem can yield erroneous results. In this article, we perform an in-depth mathematical analysis the Grunwald-Letnikov definition in depth and, as far as we know, we are the first to do so. Based on our analysis, we present a transformation scheme which will allow us to accurately analyze generalized fractional order systems in presence of significant quantities of random errors. Finally, by a simple experiment, we demonstrate the high degree of robustness to noise offered by the said transformation and thus validate our scheme.
The paper presents an exponential pheromone deposition rule to modify the basic ant system algorithm which employs constant deposition rule. A stability analysis using differential equation is carried out to find out the values of parameters that mak e the ant system dynamics stable for both kinds of deposition rule. A roadmap of connected cities is chosen as the problem environment where the shortest route between two given cities is required to be discovered. Simulations performed with both forms of deposition approach using Elitist Ant System model reveal that the exponential deposition approach outperforms the classical one by a large extent. Exhaustive experiments are also carried out to find out the optimum setting of different controlling parameters for exponential deposition approach and an empirical relationship between the major controlling parameters of the algorithm and some features of problem environment.
Particle swarm optimization (PSO) is extensively used for real parameter optimization in diverse fields of study. This paper describes an application of PSO to the problem of designing a fractional-order proportional-integral-derivative (FOPID) contr oller whose parameters comprise proportionality constant, integral constant, derivative constant, integral order (lambda) and derivative order (delta). The presence of five optimizable parameters makes the task of designing a FOPID controller more challenging than conventional PID controller design. Our design method focuses on minimizing the Integral Time Absolute Error (ITAE) criterion. The digital realization of the deigned system utilizes the Tustin operator-based continued fraction expansion scheme. We carry out a simulation that illustrates the effectiveness of the proposed approach especially for realizing fractional-order plants. This paper also attempts to study the behavior of fractional PID controller vis-a-vis that of its integer order counterpart and demonstrates the superiority of the former to the latter.
Ant Colony Optimization (ACO) is a metaheuristic for solving difficult discrete optimization problems. This paper presents a deterministic model based on differential equation to analyze the dynamics of basic Ant System algorithm. Traditionally, the deposition of pheromone on different parts of the tour of a particular ant is always kept unvarying. Thus the pheromone concentration remains uniform throughout the entire path of an ant. This article introduces an exponentially increasing pheromone deposition approach by artificial ants to improve the performance of basic Ant System algorithm. The idea here is to introduce an additional attracting force to guide the ants towards destination more easily by constructing an artificial potential field identified by increasing pheromone concentration towards the goal. Apart from carrying out analysis of Ant System dynamics with both traditional and the newly proposed deposition rules, the paper presents an exhaustive set of experiments performed to find out suitable parameter ranges for best performance of Ant System with the proposed deposition approach. Simulations reveal that the proposed deposition rule outperforms the traditional one by a large extent both in terms of solution quality and algorithm convergence. Thus, the contributions of the article can be presented as follows: i) it introduces differential equation and explores a novel method of analyzing the dynamics of ant system algorithms, ii) it initiates an exponentially increasing pheromone deposition approach by artificial ants to improve the performance of algorithm in terms of solution quality and convergence time, iii) exhaustive experimentation performed facilitates the discovery of an algebraic relationship between the parameter set of the algorithm and feature of the problem environment.
The Proportional-Integral-Derivative Controller is widely used in industries for process control applications. Fractional-order PID controllers are known to outperform their integer-order counterparts. In this paper, we propose a new technique of fra ctional-order PID controller synthesis based on peak overshoot and rise-time specifications. Our approach is to construct an objective function, the optimization of which yields a possible solution to the design problem. This objective function is optimized using two popular bio-inspired stochastic search algorithms, namely Particle Swarm Optimization and Differential Evolution. With the help of a suitable example, the superiority of the designed fractional-order PID controller to an integer-order PID controller is affirmed and a comparative study of the efficacy of the two above algorithms in solving the optimization problem is also presented.
System identification refers to estimation of process parameters and is a necessity in control theory. Physical systems usually have varying parameters. For such processes, accurate identification is particularly important. Online identification sche mes are also needed for designing adaptive controllers. Real processes are usually of fractional order as opposed to the ideal integral order models. In this paper, we propose a simple and elegant scheme of estimating the parameters for such a fractional order process. A population of process models is generated and updated by particle swarm optimization (PSO) technique, the fitness function being the sum of squared deviations from the actual set of observations. Results show that the proposed scheme offers a high degree of accuracy even when the observations are corrupted to a significant degree. Additional schemes to improve the accuracy still further are also proposed and analyzed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا