ترغب بنشر مسار تعليمي؟ اضغط هنا

Complete Identification of a Dynamic Fractional Order System Under Non-ideal Conditions Using Fractional Differintegral Definitions

116   0   0.0 ( 0 )
 نشر من قبل Deepyaman Maiti
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This contribution deals with identification of fractional-order dynamical systems. System identification, which refers to estimation of process parameters, is a necessity in control theory. Real processes are usually of fractional order as opposed to the ideal integral order models. A simple and elegant scheme of estimating the parameters for such a fractional order process is proposed. This method employs fractional calculus theory to find equations relating the parameters that are to be estimated, and then estimates the process parameters after solving the simultaneous equations. The data used for the calculations are intentionally corrupted to simulate real-life conditions. Results show that the proposed scheme offers a very high degree of accuracy even for erroneous data.



قيم البحث

اقرأ أيضاً

This contribution deals with identification of fractional-order dynamical systems. System identification, which refers to estimation of process parameters, is a necessity in control theory. Real processes are usually of fractional order as opposed to the ideal integral order models. A simple and elegant scheme of estimating the parameters for such a fractional order process is proposed. This method employs fractional calculus theory to find equations relating the parameters that are to be estimated, and then estimates the process parameters after solving the simultaneous equations. The said simultaneous equations are generated and updated using particle swarm optimization (PSO) technique, the fitness function being the sum of squared deviations from the actual set of observations. The data used for the calculations are intentionally corrupted to simulate real-life conditions. Results show that the proposed scheme offers a very high degree of accuracy even for erroneous data.
System identification refers to estimation of process parameters and is a necessity in control theory. Physical systems usually have varying parameters. For such processes, accurate identification is particularly important. Online identification sche mes are also needed for designing adaptive controllers. Real processes are usually of fractional order as opposed to the ideal integral order models. In this paper, we propose a simple and elegant scheme of estimating the parameters for such a fractional order process. A population of process models is generated and updated by particle swarm optimization (PSO) technique, the fitness function being the sum of squared deviations from the actual set of observations. Results show that the proposed scheme offers a high degree of accuracy even when the observations are corrupted to a significant degree. Additional schemes to improve the accuracy still further are also proposed and analyzed.
The modulating functions method has been used for the identification of linear and nonlinear systems. In this paper, we generalize this method to the on-line identification of fractional order systems based on the Riemann-Liouville fractional derivat ives. First, a new fractional integration by parts formula involving the fractional derivative of a modulating function is given. Then, we apply this formula to a fractional order system, for which the fractional derivatives of the input and the output can be transferred into the ones of the modulating functions. By choosing a set of modulating functions, a linear system of algebraic equations is obtained. Hence, the unknown parameters of a fractional order system can be estimated by solving a linear system. Using this method, we do not need any initial values which are usually unknown and not equal to zero. Also we do not need to estimate the fractional derivatives of noisy output. Moreover, it is shown that the proposed estimators are robust against high frequency sinusoidal noises and the ones due to a class of stochastic processes. Finally, the efficiency and the stability of the proposed method is confirmed by some numerical simulations.
120 - Paul Buckingham 2010
We propose a candidate, which we call the fractional Galois ideal after Snaiths fractional ideal, for replacing the classical Stickelberger ideal associated to an abelian extension of number fields. The Stickelberger ideal can be seen as gathering in formation about those $L$-functions of the extension which are non-zero at the special point $s = 0$, and was conjectured by Brumer to give annihilators of class-groups viewed as Galois modules. An earlier version of the fractional Galois ideal extended the Stickelberger ideal to include $L$-functions with a simple zero at $s = 0$, and was shown by the present author to provide class-group annihilators not existing in the Stickelberger ideal. The version presented in this article deals with $L$-functions of arbitrary order of vanishing at $s = 0$, and we give evidence using results of Popescu and Rubin that it is closely related to the Fitting ideal of the class-group, a canonical ideal of annihilators. Finally, we prove an equality involving Stark elements and class-groups originally due to Buyukboduk, but under a slightly different assumption, the advantage being that we need none of the Kolyvagin system machinery used in the original proof.
The Proportional-Integral-Derivative Controller is widely used in industries for process control applications. Fractional-order PID controllers are known to outperform their integer-order counterparts. In this paper, we propose a new technique of fra ctional-order PID controller synthesis based on peak overshoot and rise-time specifications. Our approach is to construct an objective function, the optimization of which yields a possible solution to the design problem. This objective function is optimized using two popular bio-inspired stochastic search algorithms, namely Particle Swarm Optimization and Differential Evolution. With the help of a suitable example, the superiority of the designed fractional-order PID controller to an integer-order PID controller is affirmed and a comparative study of the efficacy of the two above algorithms in solving the optimization problem is also presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا