ترغب بنشر مسار تعليمي؟ اضغط هنا

A system of hard rigid rods of length $k$ on hypercubic lattices is known to undergo two phases transitions when chemical potential is increased: from a low density isotropic phase to an intermediate density nematic phase, and on further increase to a high-density phase with no orientational order. In this paper, we argue that, for large $k$, the second phase transition is a first order transition with a discontinuity in density in all dimensions greater than $1$. We show the chemical potential at the transition is $approx k ln [k /ln k]$ for large $k$, and that the density of uncovered sites drops from a value $ approx (ln k)/k^2$ to a value of order $exp(-ak)$, where $a$ is some constant, across the transition. We conjecture that these results are asymptotically exact, in all dimensions $dgeq 2$. We also present evidence of coexistence of nematic and disordered phases from Monte Carlo simulations for rods of length $9$ on the square lattice.
We study relaxation of long-wavelength density perturbations in one dimensional conserved Manna sandpile. Far from criticality where correlation length $xi$ is finite, relaxation of density profiles having wave numbers $k rightarrow 0$ is diffusive, with relaxation time $tau_R sim k^{-2}/D$ with $D$ being the density-dependent bulk-diffusion coefficient. Near criticality with $k xi gsim 1$, the bulk diffusivity diverges and the transport becomes anomalous; accordingly, the relaxation time varies as $tau_R sim k^{-z}$, with the dynamical exponent $z=2-(1-beta)/ u_{perp} < 2$, where $beta$ is the critical order-parameter exponent and and $ u_{perp}$ is the critical correlation-length exponent. Relaxation of initially localized density profiles on infinite critical background exhibits a self-similar structure. In this case, the asymptotic scaling form of the time-dependent density profile is analytically calculated: we find that, at long times $t$, the width $sigma$ of the density perturbation grows anomalously, i.e., $sigma sim t^{w}$, with the growth exponent $omega=1/(1+beta) > 1/2$. In all cases, theoretical predictions are in reasonably good agreement with simulations.
We consider the asymptotic shape of clusters in the Eden model on a d-dimensional hypercubical lattice. We discuss two improvements for the well-known upper bound to the growth velocity in different directions by that of the independent branching pro cess (IBP). In the IBP, each cell gives rise to a daughter cell at a neighboring site at a constant rate. In the first improvement, we do not allow such births along the bond connecting the cell to its mother cell. In the second, we iteratively evolve the system by a growth as IBP for a duration $Delta$ t, followed by culling process in which if any cell produced a descendant within this interval, who occupies the same site as the cell itself, then the descendant is removed. We study the improvement on the upper bound on the velocity for different dimensions d. The bounds are asymptotically exact in the large-d limit. But in $d =2$, the improvement over the IBP approximation is only a few percent.
We study the distribution of lengths and other statistical properties of worms constructed by Monte Carlo worm algorithms in the power-law three-sublattice ordered phase of frustrated triangular and kagome lattice Ising antiferromagnets. Viewing each step of the worm construction as a position increment (step) of a random walker, we demonstrate that the persistence exponent $theta$ and the dynamical exponent $z$ of this random walk depend only on the universal power-law exponents of the underlying critical phase, and not on the details of the worm algorithm or the microscopic Hamiltonian. Further, we argue that the detailed balance criterion obeyed by such worm algorithms and the power-law correlations of the underlying equilibrium system together give rise to two related properties of this random walk: First, the steps of the walk are expected to be power-law correlated in time. Second, the position distribution of the walker relative to its starting point is given by the equilibrium position distribution of a particle in an attractive logarithmic central potential of strength $eta_m$, where $eta_m$ is the universal power-law exponent of the equilibrium defect-antidefect correlation function of the underlying spin system. We derive a scaling relation, $z = (2-eta_m)/(1-theta)$, that allows us to express the dynamical exponent $z(eta_m)$ of this process in terms of its persistence exponent $theta(eta_m)$. Our measurements of $z(eta_m)$ and $theta(eta_m)$ are consistent with this relation over a range of values of the universal equilibrium exponent $eta_m$, and yield subdiffusive ($z>2$) values of $z$ in the entire range. Thus we demonstrate that the worms represent a discrete-time realization of a fractional Brownian motion characterized by these properties.
106 - Santanu Das , Deepak Dhar , 2018
We consider a one-dimensional infinite lattice where at each site there sits an agent carrying a velocity, which is drawn initially for each agent independently from a common distribution. This system evolves as a Markov process where a pair of agent s at adjacent sites exchange their positions with a specified rate, while retaining their respective velocities, only if the velocity of the agent on the left site is higher. We study the statistics of the net displacement of a tagged agent $m(t)$ on the lattice, in a given duration $t$, for two different kinds of rates: one in which a pair of agents at sites $i$ and $i+1$ exchange their sites with rate $1$, independent of the velocity difference between the neighbors, and another in which a pair exchange their sites with a rate equal to their relative speed. In both cases, we find $m(t)sim t$ for large $t$. In the first case, for a randomly picked agent, $m/t$, in the limit $tto infty$, is distributed uniformly on $[-1,1]$ for all continuous distributions of velocities. In the second case, the distribution is given by the distribution of the velocities itself, with a Galilean shift by the mean velocity. We also find the large time approach to the limiting forms and compare the results with numerical simulations. In contrast, if the exchange of velocities occurs at unit rate, independent of their values, and irrespective of which is faster, $m(t)/t$ for large $t$ is has a gaussian distribution, whose width varies as $t^{-1/2}$.
190 - Hardik Rajpal , Deepak Dhar 2018
We discuss the strategy that rational agents can use to maximize their expected long-term payoff in the co-action minority game. We argue that the agents will try to get into a cyclic state, where each of the $(2N +1)$ agent wins exactly $N$ times in any continuous stretch of $(2N+1)$ days. We propose and analyse a strategy for reaching such a cyclic state quickly, when any direct communication between agents is not allowed, and only the publicly available common information is the record of total number of people choosing the first restaurant in the past. We determine exactly the average time required to reach the periodic state for this strategy. We show that it varies as $(N/ln 2) [1 + alpha cos (2 pi log_2 N)$], for large $N$, where the amplitude $alpha$ of the leading term in the log-periodic oscillations is found be $frac{8 pi^2}{(ln 2)^2} exp{(- 2 pi^2/ln 2)} approx {color{blue}7 times 10^{-11}}$.
96 - Deepak Dhar 2017
In this article, I discuss the relationship of mathematics to the physical world, and to other spheres of human knowledge. In particular, I argue that Mathematics is created by human beings, and the number $pi$ can not be said to have existed $100,00 0$ years ago, using the conventional meaning of the word `exist.
174 - Deepak Dhar 2017
These lectures provide an introduction to the directed percolation and directed animals problems, from a physicists point of view. The probabilistic cellular automaton formulation of directed percolation is introduced. The planar duality of the diode -resistor-insulator percolation problem in two dimensions, and relation of the directed percolation to undirected first passage percolation problem are described. Equivalence of the $d$-dimensional directed animals problem to $(d-1)$-dimensional Yang-Lee edge-singularity problem is established. Self-organized critical formulation of the percolation problem, which does not involve any fine-tuning of coupling constants to get critical behavior is briefly discussed.
We present simulations of the 1-dimensional Oslo rice pile model in which the critical height at each site is randomly reset after each toppling. We use the fact that the stationary state of this sandpile model is hyperuniform to reach system of size s $> 10^7$. Most previous simulations were seriously flawed by important finite size corrections. We find that all critical exponents have values consistent with simple rationals: $ u=4/3$ for the correlation length exponent, $D =9/4$ for the fractal dimension of avalanche clusters, and $z=10/7 $ for the dynamical exponent. In addition we relate the hyperuniformity exponent to the correlation length exponent $ u$. Finally we discuss the relationship with the quenched Edwards-Wilkinson (qEW) model, where we find in particular that the local roughness exponent is $alpha_{rm loc} = 1$.
We consider a toy model of interacting extrovert and introvert agents introduced earlier by Liu et al [Europhys. Lett. {bf 100} (2012) 66007]. The number of extroverts, and introverts is $N$ each. At each time step, we select an agent at random, and allow her to modify her state. If an extrovert is selected, she adds a link at random to an unconnected introvert. If an introvert is selected, she removes one of her links. The set of $N^2$ links evolves in time, and may be considered as a set of Ising spins on an $N times N$ square-grid with single-spin-flip dynamics. This dynamics satisfies detailed balance condition, and the probability of different spin configurations in the steady state can be determined exactly. The effective hamiltonian has long-range multi-spin couplings that depend on the row and column sums of spins. If the relative bias of choosing an extrovert over an introvert is varied, this system undergoes a phase transition from a state with very few links to one in which most links are occupied. We show that the behavior of the system can be determined exactly in the limit of large $N$. The behavior of large fluctuations in the total numer of links near the phase transition is determined. We also discuss two variations, called egalitarian and elitist agents, when the agents preferentially add or delete links to their least/ most-connected neighbor. These shows interesting cooperative behavior.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا