ﻻ يوجد ملخص باللغة العربية
We present simulations of the 1-dimensional Oslo rice pile model in which the critical height at each site is randomly reset after each toppling. We use the fact that the stationary state of this sandpile model is hyperuniform to reach system of sizes $> 10^7$. Most previous simulations were seriously flawed by important finite size corrections. We find that all critical exponents have values consistent with simple rationals: $ u=4/3$ for the correlation length exponent, $D =9/4$ for the fractal dimension of avalanche clusters, and $z=10/7 $ for the dynamical exponent. In addition we relate the hyperuniformity exponent to the correlation length exponent $ u$. Finally we discuss the relationship with the quenched Edwards-Wilkinson (qEW) model, where we find in particular that the local roughness exponent is $alpha_{rm loc} = 1$.
In this work, we present an effective discrete Edwards-Wilkinson equation aimed to describe the single-file diffusion process. The key physical properties of the system are captured defining an effective elasticity, which is proportional to the singl
The Edwards-Wilkinson (EW) growth of $1+1$ interface is considered in the background of the correlated random noise. We use random Coulomb potential as the background long-range correlated noise. A depinning transition is observed in a critical drivi
In this paper we discuss some features of the BCRE model. We show that this model can be understood as a mapping from a two-dimensional to a one-dimensional problem, if some conditions are satisfied. We propose some modifications that (a) guarantee m
We revisit the effects of short-ranged random quenched disorder on the universal scaling properties of the classical $N$-vector model with cubic anisotropy. We set up the nonconserved relaxational dynamics of the model, and study the universal dynami
We consider the scaling properties characterizing the hyperuniformity (or anti-hyperuniformity) of long wavelength fluctuations in a broad class of one-dimensional substitution tilings. We present a simple argument that predicts the exponent $alpha$