ترغب بنشر مسار تعليمي؟ اضغط هنا

Vectorlike quarks have been shown to resolve certain long-standing discrepancies pertaining to the bottom sector. We investigate, here, the prospects of identifying the existence of a topless vectorlike doublet $(B,~Y)$, as is preferred by the electr oweak precision measurements. Concentrating on single production, $viz.$ $B bar b$ with $B to b + Z/H$ subsequently, we find that the fully hadronic decay-channel is susceptible to discovery provided jet substructure observables are used. At the 13 TeV LHC with an integrated luminosity of 300 fb$^{-1}$, a modest value of the chromomagnetic transition moments allows for the exclusion of $M lesssim 1.8(2.2)$ TeV in the $Z$ and $H$ channels respectively.
The very large (100-1000) mass-to-light ratio applicable to the ultra-faint dwarf galaxies (UFDs) implies a high concentration of dark matter, thus rendering them ideal theatres for indirect signatures of dark matter. In this paper, we consider 14 re cently discovered UFDs and study the electromagnetic radiation emanating from them over a wide range, from gamma ray down to radio frequencies. We analyze the Fermi-LAT data on high energy gamma rays and radio fluxes at the GMRT and VLA to obtain upper limits on annihilation cross section $langlesigma vrangle$ in a model independent way. We further discuss the sensitivity of the Square Kilometer Array radio telescope in probing the synchrotron radiation from the aforementioned UFDs. We also investigate the dependences of the said upper limits on the uncertainties in the determination of various astrophysical parameters.
A very economic scenario with just three extra scalar fields beyond the Standard Model is invoked to explain the muon anomalous magnetic moment, the requisite relic abundance of dark matter as well as the Xenon-1T excess through the inelastic down-scattering of the dark scalar.
We consider an anomaly-free $mathrm{U}(1)$ extension of the Standard Model with three right-handed neutrinos (RHNs) and two complex scalars, wherein the charge assignments preclude all tree-level mass terms for the neutrinos. Considering this setup, in turn, to be only a low-energy effective theory, we introduce higher-dimensional terms {em a la} Froggatt-Nielsen to naturally generate tiny neutrino masses. One of the RHNs turns out to be very light, thereby constituting the main decay mode for the $Z$ and hence relaxing the LHC dilepton resonance search constraints. This very RHN has a lifetime comparable to or bigger than the age of the Universe, and, hence, could account for a non-negligible fraction of the dark matter.
Dark matter particles with masses in the sub-GeV range have escaped severe constraints from direct detection experiments such as LUX, PANDAX-II and XENON100 as the corresponding recoil energies are, largely, lower than the detector thresholds. In a c ompanion paper, we demonstrated, in a model independent approach, that a significantly large fraction of the parameter space escapes the cosmological and astrophysical constraints. We show here, though, that the remaining parameter space lends itself to the possibility of discovery at both direct detection experiments (such as CRESST-II) as well as in a low-energy collider such as Belle-II.
Extant anomalies in several semileptonic $B$-meson decays argue for physics beyond the Standard Model. Measurements of both neutral-current decays (such as $R_K$, $R_{K^*}$ and $B_srightarrow phimumu$) as well as charged-current ones- $R(D)$ and $R(D ^*)$ -provide strong hints for the violation of lepton flavor universality. Recent studies have shown that a class of effective field theory (EFT) models may explain such anomalies in terms of only a few parameters which can be determined phenomenologically. In this literature, we examine such resolutions in the context of the requisite $(bar{s}$ $b$)($bartau tau)$ operator, and look for its signals at the 13 TeV LHC, with a final state of one $b$-jet, and an oppositely charged $mu$-$tau$ pair, with the muon coming from the decay of one of the $tau$ leptons. We obtain discovery and exclusion limits on the model parameters as a function of luminosity at the 13 TeV LHC.
Recent results from several direct detection experiments have imposed severe constraints on the multi-GeV mass window for various dark matter (DM) models. However, many of these experiments are not sensitive to MeV scale DM as the corresponding recoi l energies are, largely, lower than the detector thresholds. We reexamine the light scalar DM in a model-independent approach. In this first of a two-part work, we develop an appropriate methodology to determine the effective coupling of such a DM to hadrons, thereby allowing for the determination of the corresponding annihilation rates. We find that while the parameter space can be constrained using cosmological and astrophysical observations, a significantly large fraction is still viable. In the companion paper, we study the sensitivity of both direct detection experiments as well as colliders to such a DM.
Models incorporating moderately heavy dark matter (DM) typically need charged (scalar) fields to establish admissible relic densities. Since the DM freezes out at an early epoch, thermal corrections to the cross sections can be important. In a compan ion paper [arXiv:1812.04247v2] we established that the infrared (IR) divergences accruing from scalar-photon interactions cancel to all orders in perturbation theory. The corresponding infrared finiteness of thermal fermionic QED has already been established. Here, we study the IR behaviour at finite temperatures, of a theory of dark matter interacting with charged scalars and fermions, which potentially contains both both linear and sub-leading logarithmic divergences. We prove that the theory is IR-finite to all orders with the divergences cancelling when both absorption and emission of photons from and into the heat bath are taken into account. While 4-point interaction terms are known to be IR finite, their inclusion leads to a neat exponentiation. The calculation follows closely the technique used for the scalar finite temperature theory.
The minimal Universal Extra Dimension scenario is highly constrained owing to opposing constraints from the observed relic density on the one hand, and the non-observation of new states at the LHC on the other. Simple extensions in five-dimensions ca n only postpone the inevitable. Here, we propose a six-dimensional alternative with the key feature being that the SM quarks and leptons are localized on orthogonal directions whereas gauge bosons traverse the entire bulk. Several different realizations of electroweak symmetry breaking are possible, while maintaining agreement with low energy observables. This model is not only consistent with all the current constraints opposing the minimal Universal Extra Dimension scenario but also allows for a multi-TeV dark matter particle without the need for any fine-tuning. In addition, it promises a plethora of new signatures at the LHC and other future experiments.
Searching for non-standard neutrino interactions, as a means for discovering physics beyond the Standard Model, has one of the key goals of dedicated neutrino experiments, current and future. We demonstrate here that much of the parameter space acces sible to such experiments is already ruled out by the RUN II data of the Large Hadron Collider experiment.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا