ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Matter, Muon Anomalous Magnetic Moment and the XENON1T Excess

76   0   0.0 ( 0 )
 نشر من قبل Vandana Sahdev
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A very economic scenario with just three extra scalar fields beyond the Standard Model is invoked to explain the muon anomalous magnetic moment, the requisite relic abundance of dark matter as well as the Xenon-1T excess through the inelastic down-scattering of the dark scalar.

قيم البحث

اقرأ أيضاً

Very recently, the Xenon1T collaboration has reported an intriguing electron recoil excess, which may imply for light dark matter. In order to interpret this anomaly, we propose the atmospheric dark matter (ADM) from the inelastic collision of cosmic rays (CRs) with the atmosphere. Due to the boost effect of high energy CRs, we show that the light ADM can be fast-moving and successfully fit the observed electron recoil spectrum through the ADM-electron scattering process. Meanwhile, our ADM predicts the scattering cross section $sigma_e sim {cal O}(10^{-38}- 10^{-39}$) cm$^{2}$, and thus can evade other direct detection constraints. The search for light meson rare decays, such as $eta to pi + slashed E_T$, would provide a complementary probe of our ADM in the future.
We show that the electron recoil excess around 2 keV claimed by the Xenon collaboration can be fitted by DM or DM-like particles having a fast component with velocity of order $sim 0.1$. Those particles cannot be part of the cold DM halo of our Galax y, so we speculate about their possible nature and origin, such as fast moving DM sub-haloes, semi-annihilations of DM and relativistic axions produced by a nearby axion star. Feasible new physics scenarios must accommodate exotic DM dynamics and unusual DM properties.
90 - Debasish Borah 2021
We propose a self-interacting boosted dark matter (DM) scenario as a possible origin of the recently reported excess of electron recoil events by the XENON1T experiment. The Standard Model has been extended with two vector-like fermion singlets charg ed under a dark $U(1)_D$ gauge symmetry to describe the dark sector. While the presence of light vector boson mediator leads to sufficient DM self-interactions to address the small scale issues of cold dark matter, the model with GeV scale DM can explain the XENON1T excess via scattering of boosted DM component with electrons at the detector. The requirement of large annihilation rate of heavier DM into the lighter one for sufficient boosted DM flux leads to suppressed thermal relic abundance. A hybrid setup of thermal and non-thermal contribution from late decay of a scalar can lead to correct relic abundance. All these requirements leave a very tiny parameter space for sub-GeV DM keeping the model very predictive for near future experiments.
We propose boosted dark matter (BDM) as a possible explanation for the excess of keV electron recoil events observed by XENON1T. BDM particles have velocities much larger than those typical of virialized dark matter, and, as such, BDM-electron scatte ring can naturally produce keV electron recoils. We show that the required BDM-electron scattering cross sections can be easily realized in a simple model with a heavy vector mediator. Though these cross sections are too large for BDM to escape from the Sun, the BDM flux can originate from the Galactic Center or from halo dark matter annihilations. Furthermore, a daily modulation of the BDM signal will be present, which could not only be used to differentiate it from various backgrounds, but would also provide important directional information for the BDM flux.
We show that the excess in electron recoil events seen by the XENON1T experiment can be explained by relatively low-mass Luminous Dark Matter candidate. The dark matter scatters inelastically in the detector (or the surrounding rock), to produce a he avier dark state with a ~2.75 keV mass splitting. This heavier state then decays within the detector, producing a peak in the electron recoil spectrum which is a good fit to the observed excess. We comment on the ability of future direct detection datasets to differentiate this model from other Beyond the Standard Model scenarios, and from possible tritium backgrounds, including the use of diurnal modulation, multi-channel signals etc.,~as possible distinguishing features of this scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا