ترغب بنشر مسار تعليمي؟ اضغط هنا

MUSE observations of NGC5813 reveal a complex structure in the velocity dispersion map, previously hinted by SAURON observations. The structure is reminiscent of velocity dispersion maps of galaxies comprising two counter-rotating discs, and may expl ain the existence of the kinematically distinct core (KDC). Further evidence for two counter-rotating components comes from the analysis of the higher moments of the stellar line-of-sight velocity distributions and fitting MUSE spectra with two separate Gaussian line-of-sight velocity distributions. The emission-line kinematics show evidence of being linked to the present cooling flows and the buoyant cavities seen in X-rays. We detect ionised gas in a nuclear disc-like structure, oriented like the KDC, which is, however, not directly related to the KDC. We build an axisymmetric Schwarzschild dynamical model, which shows that the MUSE kinematics can be reproduced well with two counter-rotating orbit families, characterised by relatively low angular momentum components, but clearly separated in integral phase space and with radially varying contributions. The model indicates that the counter-rotating components in NGC5813 are not thin discs, but dynamically hot structures. Our findings give further evidence that KDCs in massive galaxies should not necessarily be considered as structurally or dynamically decoupled regions, but as the outcomes of the mixing of different orbital families, where the balance in the distribution of mass of the orbital families is crucial. We discuss the formation of the KDC in NGC5813 within the framework of gas accretion, binary mergers and formation of turbulent thick discs from cold streams at high redshift.
76 - Eric Emsellem 2014
We present evidence for the presence of a low-amplitude kinematically distinct component in the giant early-type galaxy M87, via datasets obtained with the SAURON and MUSE integral-field spectroscopic units. The MUSE velocity field reveals a strong t wist of ~140 deg within the central 30 arcsec connecting outwards such a kinematically distinct core to a prolate-like rotation around the large-scale photometric major-axis of the galaxy. The existence of these kinematic features within the apparently round central regions of M87 implies a non-axisymmetric and complex shape for this galaxy, which could be further constrained using the presented kinematics. The associated orbital structure should be interpreted together with other tracers of the gravitational potential probed at larger scales (e.g., Globular Clusters, Ultra Compact Dwarfs, Planetary Nebulae): it would offer an insight in the assembly history of one of the brightest galaxies in the Virgo Cluster. These data also demonstrate the potential of the MUSE spectrograph to uncover low-amplitude spectral signatures.
One quarter of all nearby early-type galaxies (ETGs) outside Virgo host a disc/ring of HI with size from a few to tens of kpc and mass up to ~1e+9 solar masses. Here we investigate whether this HI is related to the presence of a stellar disc within t he host making use of the classification of ETGs in fast and slow rotators (FR/SR). We find a large diversity of HI masses and morphologies within both families. Surprisingly, SRs are detected as often, host as much HI and have a similar rate of HI discs/rings as FRs. Accretion of HI is therefore not always linked to the growth of an inner stellar disc. The weak relation between HI and stellar disc is confirmed by their frequent kinematical misalignment in FRs, including cases of polar and counterrotating gas. In SRs the HI is usually polar. This complex picture highlights a diversity of ETG formation histories which may be lost in the relative simplicity of their inner structure and emerges when studying their outer regions. We find that LCDM hydrodynamical simulations have difficulties reproducing the HI properties of ETGs. The gas discs formed in simulations are either too massive or too small depending on the star formation feedback implementation. Kinematical misalignments match the observations only qualitatively. The main point of conflict is that nearly all simulated FRs and a large fraction of all simulated SRs host corotating HI. This establishes the HI properties of ETGs as a novel challenge to simulations.
We present a new method that derives both velocity components in the equatorial plane of a barred stellar disc from the observed line-of-sight velocity, assuming geometry of a thin disc. The method can be applied to large departures from circular mot ion, and does not require multipole decomposition. It is based on assumptions that the bar is close to steady-state (i.e. does not evolve fast), and that both morphology and kinematics are symmetrical with respect to the major axis of the bar. We derive the equations used in the method, and analyze the effect of observational errors on the inferred velocity fields. We show that this method produces meaningful results via a simple toy model. We also apply the method on integral-field data of NGC 936, for which we recover both velocity components in the disc. Knowing both velocity components in the disc, i.e. the non-observable transverse velocity in addition to the line-of-sight velocity, puts additional constraints on dynamical models and allows for new ways of determining parameters that are crucial in characterizing galaxies.
[Abridged] We analysed two-dimensional maps of 48 early-type galaxies obtained with the SAURON and OASIS integral-field spectrographs using kinemetry, a generalisation of surface photometry to the higher order moments of the line-of-sight velocity di stribution (LOSVD). In the SAURON sample, we find that 31% of early-type galaxies are single component systems. 91% of the multi-components systems have two kinematic subcomponents, the rest having three. In addition, 29% of galaxies have kinematically decoupled components, nuclear components with significant kinematic twists. We find that the velocity maps of fast rotators closely resemble those of inclined disks, except in the transition regions between kinematic subcomponents. In terms of E/S0 classification, this means that 74% of Es and 92% of S0s have components with disk-like kinematics. For the majority of fast rotators, the kinematic axial ratios are equal to or less than their photometric axial ratios, contrary to what is predicted with isotropic Jeans models viewed at different inclinations. The position angles of fast rotators are constant, while they vary abruptly in slow rotators. Velocity dispersion maps of face-on galaxies have shapes similar to the distribution of light. We constructed local (bin-by-bin) h3 - V/sigma and h4 - V/sigma diagrams from SAURON observations. We confirm the classical anti-correlation of h3 and Vsigma, but we also find that h3 is almost zero in some objects or even weakly correlated with V/sigma. The distribution of h4 for fast and slow rotators is mildly positive on average. The difference between slow and fast rotators is traceable throughout all moments of the LOSVD, with evidence for different intrinsic shapes and orbital contents and, hence, likely different evolutionary paths.
We present HI observations of the elliptical galaxy NGC 2974, obtained with the Very Large Array. These observations reveal that the previously detected HI disc in this galaxy (Kim et al. 1988) is in fact a ring. By studying the harmonic expansion of the velocity field along the ring, we constrain the elongation of the halo and find that the underlying gravitational potential is consistent with an axisymmetric shape. We construct mass models of NGC 2974 by combining the HI rotation curve with the central kinematics of the ionised gas, obtained with the integral-field spectrograph SAURON. We introduce a new way of correcting the observed velocities of the ionised gas for asymmetric drift, and hereby disentangle the random motions of the gas caused by gravitational interaction from those caused by turbulence. To reproduce the observed flat rotation curve of the HI gas, we need to include a dark halo in our mass models. A pseudo-isothermal sphere provides the best model to fit our data, but we also tested an NFW halo and Modified Newtonian Dynamics (MOND), which fit the data marginally worse. The mass-to-light ratio M/L_I increases in NGC 2974 from 4.3 (M/L_I)sun at one effective radius to 8.5 (M/L_I)sun at 5 Re. This increase of M/L already suggests the presence of dark matter: we find that within 5 Re at least 55 per cent of the total mass is dark.
Using the unique dataset obtained within the course of the SAURON project, a radically new view of the structure, dynamics and stellar populations of early-type galaxies has emerged. We show that galaxies come in two broad flavours (slow and fast rot ators), depending on whether or not they exhibit clear large-scale rotation, as indicated via a robust measure of the specific angular momentum of baryons. This property is also linked with other physical characteristics of early-type galaxies, such as: the presence of dynamically decoupled cores, orbital structure and anisotropy, stellar populations and dark matter content. I here report on the observed link between this baryonic angular momentum and a mass sequence, and how this uniquely relates to the building of the red sequence via dissipative/dissipationless mergers and secular evolution.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا