ﻻ يوجد ملخص باللغة العربية
[Abridged] We analysed two-dimensional maps of 48 early-type galaxies obtained with the SAURON and OASIS integral-field spectrographs using kinemetry, a generalisation of surface photometry to the higher order moments of the line-of-sight velocity distribution (LOSVD). In the SAURON sample, we find that 31% of early-type galaxies are single component systems. 91% of the multi-components systems have two kinematic subcomponents, the rest having three. In addition, 29% of galaxies have kinematically decoupled components, nuclear components with significant kinematic twists. We find that the velocity maps of fast rotators closely resemble those of inclined disks, except in the transition regions between kinematic subcomponents. In terms of E/S0 classification, this means that 74% of Es and 92% of S0s have components with disk-like kinematics. For the majority of fast rotators, the kinematic axial ratios are equal to or less than their photometric axial ratios, contrary to what is predicted with isotropic Jeans models viewed at different inclinations. The position angles of fast rotators are constant, while they vary abruptly in slow rotators. Velocity dispersion maps of face-on galaxies have shapes similar to the distribution of light. We constructed local (bin-by-bin) h3 - V/sigma and h4 - V/sigma diagrams from SAURON observations. We confirm the classical anti-correlation of h3 and Vsigma, but we also find that h3 is almost zero in some objects or even weakly correlated with V/sigma. The distribution of h4 for fast and slow rotators is mildly positive on average. The difference between slow and fast rotators is traceable throughout all moments of the LOSVD, with evidence for different intrinsic shapes and orbital contents and, hence, likely different evolutionary paths.
2D stellar kinematics of 48 representative E and S0 galaxies obtained with the SAURON IFS reveal that early-type galaxies appear in two broad flavours, depending on whether they exhibit clear large-scale rotation or not. We define a new parameter Lam
For early-type galaxies, the ability to sustain a corona of hot, X-ray emitting gas could have played a key role in quenching their star-formation history. Yet, it is still unclear what drives the precise amount of hot gas around these galaxies. By c
Using far (FUV) and near (NUV) ultraviolet photometry from guest investigator programmes on the Galaxy Evolution Explorer (GALEX) satellite, optical photometry from the MDM Observatory and optical integral-field spectroscopy from SAURON, we explore t
The unexpected rising flux of early-type galaxies at decreasing ultraviolet (UV) wavelengths is a long-standing mystery. One important observational constraint is the correlation between UV-optical colours and Mg2 line strengths found by Burstein et
We combine SAURON integral field data of a representative sample of local early-type, red sequence galaxies with Spitzer/IRAC imaging in order to investigate the presence of trace star formation in these systems. With the Spitzer data, we identify ga