ترغب بنشر مسار تعليمي؟ اضغط هنا

341 - Alain Audouard 2013
De Haas-van Alphen oscillations are studied for Fermi surfaces illustrating the Pippards model, commonly observed in multiband organic metals. Field- and temperature-dependent amplitude of the various Fourier components, linked to frequency combinati ons arising from magnetic breakdown between different bands, are considered. Emphasis is put on the Onsager phase factor of these components. It is demonstrated that, in addition to the usual Maslov index, field-dependent phase factors must be considered to precisely account for the data at high magnetic field. We present compelling evidence of the existence of such contributions for the organic metal theta-(BEDT-TTF)4CoBr4(C6H4Cl2).
By improving the experimental conditions and extensive data accumulation, we have achieved very high-precision in the measurements of the de Haas-van Alphen effect in the underdoped high-temperature superconductor YBa$_{2}$Cu$_{3}$O$_{6.5}$. We find that the main oscillation, so far believed to be single-frequency, is composed of three closely spaced frequencies. We attribute this to bilayer splitting and warping of a single quasi-2D Fermi surface, indicating that emph{c}-axis coherence is restored at low temperature in underdoped cuprates. Our results do not support the existence of a larger frequency of the order of 1650 T reported recently in the same compound [S.E. Sebastian {it et al}., Nature {bf 454}, 200 (2008)].
180 - David Vignolles 2007
The organic metal theta$-(BETS)$_4$HgBr$_4$(C$_6$H$_5$Cl) is known to undergo a phase transition as the temperature is lowered down to about 240 K. X-ray data obtained at 200 K indicate a corresponding modification of the crystal structure, the symme try of which is lowered from quadratic to monoclinic. In addition, two different types of cation layers are observed in the unit cell. The Fermi surface (FS), which can be regarded as a network of compensated electron and hole orbits according to band structure calculations at room temperature, turns to a set of two alternating linear chains of orbits at low temperature. The field and temperature dependence of the Shubnikov-de Haas oscillations spectrum have been studied up to 54 T. Eight frequencies are observed which, in any case, points to a FS much more complex than predicted by band structure calculations at room temperature, even though some of the observed Fourier components might be ascribed to magnetic breakdown or frequency mixing. The obtained spectrum could result from either an interaction between the FSs linked to each of the two cation layers or to an eventual additional phase transition in the temperature range below 200 K.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا