ترغب بنشر مسار تعليمي؟ اضغط هنا

Crystal structure, Fermi surface calculations and Shubnikov-de Haas oscillations spectrum of the organic metal $theta$-(BETS)$_4$HgBr$_4$(C$_6$H$_5$Cl) at low temperature

179   0   0.0 ( 0 )
 نشر من قبل Alain Audouard
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف David Vignolles




اسأل ChatGPT حول البحث

The organic metal theta$-(BETS)$_4$HgBr$_4$(C$_6$H$_5$Cl) is known to undergo a phase transition as the temperature is lowered down to about 240 K. X-ray data obtained at 200 K indicate a corresponding modification of the crystal structure, the symmetry of which is lowered from quadratic to monoclinic. In addition, two different types of cation layers are observed in the unit cell. The Fermi surface (FS), which can be regarded as a network of compensated electron and hole orbits according to band structure calculations at room temperature, turns to a set of two alternating linear chains of orbits at low temperature. The field and temperature dependence of the Shubnikov-de Haas oscillations spectrum have been studied up to 54 T. Eight frequencies are observed which, in any case, points to a FS much more complex than predicted by band structure calculations at room temperature, even though some of the observed Fourier components might be ascribed to magnetic breakdown or frequency mixing. The obtained spectrum could result from either an interaction between the FSs linked to each of the two cation layers or to an eventual additional phase transition in the temperature range below 200 K.

قيم البحث

اقرأ أيضاً

De Haas-van Alphen oscillations of the organic metal $theta$-(ET)$_4$ZnBr$_4$(C$_6$H$_4$Cl$_2$) are studied in pulsed magnetic fields up to 81 T. The long decay time of the pulse allows determining reliable field-dependent amplitudes of Fourier compo nents with frequencies up to several kiloteslas. The Fourier spectrum is in agreement with the model of a linear chain of coupled orbits. In this model, all the observed frequencies are linear combinations of the frequency linked to the basic orbit $alpha$ and to the magnetic-breakdown orbit $beta$.
We present magnetoresistance studies of the quasi-two-dimensional organic conductor $kappa$-(BETS)$_2$Mn[N(CN)$_2$]$_3$, where BETS stands for bis-(ethylene-dithio)-tetra-selena-fulvalene. Under a moderate pressure of 1.4,kbar, required for stabilizi ng the metallic ground state, Shubnikov - de Haas oscillations, associated with a classical and a magnetic-breakdown cyclotron orbits on the cylindrical Fermi surface, have been found at fields above 10,T. The effective cyclotron masses evaluated from the temperature dependence of the oscillation amplitudes reveal strong renormalization due to many-body interactions. The analysis of the relative strength of the oscillations corresponding to the different orbits and its dependence on magnetic field suggests an enhanced role of electron-electron interactions on flat parts of the Fermi surface.
Changes of the electronic structure accompanied by charge localization and a transition to an antiferromagnetic ground state were observed in the (DOEO)$_4$[HgBr$_4$]TCE organic semiconductor. Localization starts in the region of about 150 K and the antiferromagnetic state occurs below 60 K. The magnetic moment of the crystal contains contributions of antiferromagnetic inclusions (droplets), individual paramagnetic centers formed by localized holes and free charge carriers at 2 K. Two types of inclusions of 100-400 nm and 2-5 nm sizes were revealed by transmission electron microscopy. Studying the symmetry of the antiferromagnetic droplets (100-400 nm inclusions) and individual localized holes by electron spin resonance (ESR) revealed fingerprints of the antiferromagnetic resonance spectra of the spin correlated droplets as well as paramagnetic resonance spectra of the individual localized charge carriers. Photoelectron spectroscopy in the VUV, soft and hard X-ray range shows temperature-dependent effects upon crossing the critical temperature. The substantially different probing depths of soft and hard X-ray photoelectron spectroscopy yield information on the surface termination. The combined investigation using soft and hard X-ray photons to study the same sample results in details of electronic structure including structural aspects at the surface.
67 - S. Capponi , D. Poilblanc 2006
We re-examine the thermodynamic properties of the coupled dimer system Cu$_2$(C$_5$H$_{12}$N$_2$)$_2$Cl$_4$ under magnetic field in the light of recent NMR experiments [Clemancey {it et al.}, Phys. Rev. Lett. {bf 97}, 167204 (2006)] suggesting the ex istence of a finite Dzyaloshinskii-Moriya interaction. We show that including such a spin anisotropy greatly improves the fit of the magnetization curve and gives the correct trend of the insofar unexplained anomalous behavior of the specific heat in magnetic field at low temperature.
The temperature dependence of electronic and magnetic properties of the organic charge-transfer salt (DOEO)$_4$[HgBr$_4$]TCE was investigated using magnetometry. Electronic transport properties revealed three distinct phases which are related to diff erent magnetic coupling phenomena. In the low-temperature insulating phase (T<70 K) the antiferromagnetic coupling between two distinct sites of magnetic moments causes antiferromagnetic order below the Neel temperature T$_N$=40 K. In the temperature region 70-120 K the (DOEO)$_4$[HgBr$_4$]TCE shows metallic-like behavior and with further increasing of temperature it becomes a bad metal due to loss of itinerant character and increase of hopping conductivity of charge carriers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا