ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider Taylor dispersion for tracer particles in micro-fluidic planar channels with strong confinement. In this context, the channel walls modify the local diffusivity tensor and also interactions between the tracer particles and the walls becom e important. We provide a simple and general formula for the effective diffusion constant along the channel as well as the first non-trivial finite time correction for arbitrary flows along the channel, arbitrary interaction potentials with the walls and arbitrary expressions for the diffusion tensor. The formula are in particular amenable to a straightforward numerical implementation, rendering them extremely useful for comparison with experiments. We present a number of applications, notably for systems which have parabolically varying diffusivity profiles, to systems with attractive interactions with the walls as well as electroosmotic flows between plates with differing surface charges within the Debye-Huckel approximation.
We consider the effect of uniform driving on the interface between two phases which are described by model C dynamics. The non-driven system has a classical Gaussian interface described by capillary wave theory. The model under driving retains Gaussi an statistics but the interface statistics are modified by driving, notably the height fluctuations are suppressed and the correlation length of the fluctuations is increased. The model we introduce can also be used as a model for the effect of activity on interface dynamics.
We consider Euclidean path integrals with higher derivative actions, including those that depend quadratically on acceleration, velocity and position. Such path integrals arise naturally in the study of stiff polymers, membranes with bending rigidity as well as a number of models for electrolytes. The approach used is based on the relation between quadratic path integrals and Gaussian fields and we also show how it can be extended to the evaluation of even higher order path integrals.
In net-neutral systems correlations between charge fluctuations generate strong attractive thermal Casimir forces and engineering these forces to optimize nanodevice performance is an important challenge. We show how the normal and lateral thermal Ca simir forces between two plates containing Brownian charges can be modulated by decorrelating the system through the application of an electric field, which generates a nonequilibrium steady state with a constant current in one or both plates, reducing the ensuing fluctuation-generated normal force while at the same time generating a lateral drag force. This hypothesis is confirmed by detailed numerical simulations as well as an analytical approach based on stochastic density functional theory.
We analyze the mean squared displacement of a Brownian particle in a medium with a spatially varying local diffusivity which is assumed to be periodic. When the system is asymptotically diffusive the mean squared displacement, characterizing the disp ersion in the system, is, at late times, a linear function of time. A Kubo type formula is given for the mean squared displacement which allows the recovery of some known results for the effective diffusion constant $D_e$ in a direct way, but also allows an understanding of the asymptotic approach to the diffusive limit. In particular, as well as as computing the slope of a linear fit to the late time mean squared displacement, we find a formula for the constant where the fit intersects the y axis.
We consider how membrane fluctuations can modify the miscibility of lipid mixtures, that is to say how the phase diagram of a boundary-constrained membrane is modified when the membrane is allowed to fluctuate freely in the case of zero surface tensi on. In order for fluctuations to have an effect, the different lipid types must have differing Gaussian rigidities. We show, somewhat paradoxically, that fluctuation-induced interactions can be treated approximately in a mean-field type theory. Our calculations predict that, depending on the difference in bending and Gaussian rigidity of the lipids, membrane fluctuations can either favor or disfavor mixing.
A Langevin process diffusing in a periodic potential landscape has a time dependent diffusion constant which means that its average mean squared displacement (MSD) only becomes linear at late times. The long time, or effective diffusion constant, can be estimated from the slope of a linear fit of the MSD at late times. Due to the cross over between a short time microscopic diffusion constant, which is independent of the potential, to the effective late time diffusion constant, a linear fit of the MSD will not in general pass through the origin and will have a non-zero constant term. Here we address how to compute the constant term and provide explicit results for Brownian particles in one dimension in periodic potentials. We show that the constant is always positive and that at low temperatures it depends on the curvature of the minimum of the potential. For comparison we also consider the same question for the simpler problem of a symmetric continuous time random walk in discrete space. Here the constant can be positive or negative and can be used to determine the variance of the hopping time distribution.
We investigate the dynamics of thermal Casimir interactions between plates described within a living conductor model, with embedded mobile anions and cations, whose density field obeys a stochastic partial differential equation which can be derived s tarting from the Langevin equations of the individual particles. This model describes the thermal Casimir interaction in the same way that the fluctuating dipole model describes van der Waals interactions. The model is analytically solved in a Debye-Huckel-like approximation. We identify several limiting dynamical regimes where the time dependence of the thermal Casimir interactions can be obtained explicitly. Most notably we find a regime with diffusive scaling, even though the charges are confined to the plates and do not diffuse into the intervening space, which makes the diffusive scaling difficult to anticipate and quite unexpected on physical grounds.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا