ترغب بنشر مسار تعليمي؟ اضغط هنا

72 - David Rupke 2014
Emission from metal resonant lines has recently emerged as a potentially powerful probe of the structure of galactic winds at low and high redshift. In this work, we present only the second example of spatially resolved observations of NaI D emission from a galactic wind in a nearby galaxy (and the first 3D observations at any redshift). F05189-2524, a nearby (z=0.043) ultra luminous infrared galaxy powered by a quasar, was observed with the integral field unit on the Gemini Multi-Object Spectrograph (GMOS) at Gemini North. NaI D absorption in the system traces dusty filaments on the near side of an extended, AGN-driven galactic wind (with projected velocities up to 2000 km/s). These filaments (A_V < 4) and N(H) < 10^22 cm^-2) simultaneously obscure the stellar continuum and NaI D emission lines. The NaI D emission lines serve as a complementary probe of the wind; they are strongest in regions of low foreground obscuration and extend up to the limits of the field of view (galactocentric radii of 4 kpc). An azimuthally symmetric Sersic model extincted by the same foreground screen as the stellar continuum reproduces the NaI D emission line surface brightness distribution except in the inner regions of the wind, where some emission-line filling of absorption lines may occur. The presence of detectable NaI D emission in F05189-2524 may be due to its high continuum surface brightness at the rest wavelength of NaI D. These data uniquely constrain current models of cool gas in galactic winds and serve as a benchmark for future observations and models.
29 - David Rupke 2013
We present Keck laser guide star adaptive optics observations of the nearby buried QSO F08572+3915:NW. We use near-infrared integral field data taken with OSIRIS to reveal a compact disk and molecular outflow using Pa-alpha and H_2 rotational-vibrati onal transitions at a spatial resolution of 100 pc. The outflow emerges perpendicular to the disk into a bicone of one-sided opening angle 100 degrees up to distances of 400 pc from the nucleus. The integrated outflow velocities, which reach at least -1300 km/s, correspond exactly to those observed in (unresolved) OH absorption, but are smaller (larger) than those observed on larger scales in the ionized (neutral atomic) outflow. These data represent a factor of >10 improvement in the spatial resolution of molecular outflows from mergers/QSOs, and plausibly represent the early stages of the excavation of the dust screen from a buried QSO.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا