ترغب بنشر مسار تعليمي؟ اضغط هنا

Breaking the Obscuring Screen: A Resolved Molecular Outflow in a Buried QSO

30   0   0.0 ( 0 )
 نشر من قبل David S. N. Rupke
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف David Rupke




اسأل ChatGPT حول البحث

We present Keck laser guide star adaptive optics observations of the nearby buried QSO F08572+3915:NW. We use near-infrared integral field data taken with OSIRIS to reveal a compact disk and molecular outflow using Pa-alpha and H_2 rotational-vibrational transitions at a spatial resolution of 100 pc. The outflow emerges perpendicular to the disk into a bicone of one-sided opening angle 100 degrees up to distances of 400 pc from the nucleus. The integrated outflow velocities, which reach at least -1300 km/s, correspond exactly to those observed in (unresolved) OH absorption, but are smaller (larger) than those observed on larger scales in the ionized (neutral atomic) outflow. These data represent a factor of >10 improvement in the spatial resolution of molecular outflows from mergers/QSOs, and plausibly represent the early stages of the excavation of the dust screen from a buried QSO.

قيم البحث

اقرأ أيضاً

We present ALMA observations of the CO(2-1) and CO(3-2) molecular gas transitions and associated (sub)-mm continua of the nearby Seyfert 1.5 galaxy NGC3227 with angular resolutions 0.085-0.21 (7-15pc). On large scales the cold molecular gas shows cir cular motions as well as streaming motions on scales of a few hundred parsecs associated with a large scale bar. We fitted the nuclear ALMA 1.3mm emission with an unresolved component and an extended component. The 850$mu$m emission shows at least two extended components, one along the major axis of the nuclear disk and the other along the axis of the ionization cone. The molecular gas in the central region (1 ~73pc) shows several CO clumps with complex kinematics which appears to be dominated by non-circular motions. While we cannot demonstrate conclusively the presence of a warped nuclear disk, we also detected non-circular motions along the kinematic minor axis. They reach line-of-sight velocities of v-vsys =150-200km/s. Assuming that the radial motions are in the plane of the galaxy, then we interpret them as a nuclear molecular outflow due to molecular gas in the host galaxy being entrained by the AGN wind. We derive molecular outflow rates of $5,M_odot,{rm yr}^{-1}$ and $0.6,M_odot,{rm yr}^{-1}$ at projected distances of up to 30pc to the northeast and southwest of the AGN, respectively. At the AGN location we estimate a mass in molecular gas of $5times 10^{5},M_odot$ and an average column density $N({rm H}_2) = 2-3times 10^{23},{rm cm}^{-2}$ in the inner 15pc. The nuclear molecular gas and sub-mm continuum emission of NGC3227 do not resemble the classical compact torus. Rather, these emissions extend for several tens of parsecs and appear connected with the circumnuclear ring in the host galaxy disk, as found in other local AGN. (Abridged)
Feedback in the form of mass outflows driven by star formation or active galactic nuclei is a key component of galaxy evolution. The luminous infrared galaxy Zw 049.057 harbours a compact obscured nucleus with a possible far-IR signature of outflowin g molecular gas. Due to the high optical depths at far-IR wavelengths, the interpretation of the outflow signature is uncertain. At mm and radio wavelengths, the radiation is better able to penetrate the large columns of gas and dust. We used high resolution observations from the SMA, ALMA, and the VLA to image the CO 2-1 and 6-5 emission, the 690 GHz continuum, the radio cm continuum, and absorptions by rotationally excited OH. The CO line profiles exhibit wings extending 300 km/s beyond the systemic velocity. At cm wavelengths, we find a compact (40 pc) continuum component in the nucleus, with weaker emission extending several 100 pc approximately along the major and minor axes of the galaxy. In the OH absorption lines toward the compact continuum, wings extending to a similar velocity as for the CO are seen on the blue side of the profile. The weak cm continuum emission along the minor axis is aligned with a highly collimated, jet-like dust feature previously seen in near-IR images of the galaxy. Comparison of the apparent optical depths in the OH lines indicate that the excitation conditions in Zw 049.057 differ from those in other OH megamaser galaxies. We interpret the wings in the spectral lines as signatures of a molecular outflow. A relation between this outflow and the minor axis radio feature is possible, although further studies are required to investigate this possible association and understand the connection between the outflow and the nuclear activity. Finally, we suggest that the differing OH excitation conditions are further evidence that Zw 049.057 is in a transition phase between megamaser and kilomaser activity.
To understand the nature of transient obscuring outflows in active galactic nuclei, we observed the Seyfert 1 galaxy NGC 3783 on two occasions in December 2016 triggered by Swift monitoring indicating strong soft X-ray absorption in November. We obta ined ultraviolet spectra using COS on HST and optical spectra using FEROS on the MPG/ESO 2.2-m telescope that were simultaneous with X-ray spectra from XMM-Newton and NuSTAR. We find new components of broad, blue-shifted absorption associated with Ly$alpha$, ion{N}{v}, ion{Si}{iv}, and ion{C}{iv} in our COS spectra. The absorption extends from velocities near zero in the rest-frame of the host galaxy to $-6200$ $rm km~s^{-1}$. These features appear for the first time in NGC 3783 at the same time as the heavy soft X-ray absorption seen in the XMM-Newton X-ray spectra. The X-ray absorption has a column density of $sim 10^{23}~rm cm^{-2}$, and it partially covers the X-ray continuum source. The X-ray absorption becomes more transparent in the second observation, as does the UV absorption. Combining the X-ray column densities with the UV spectral observations yields an ionization parameter for the obscuring gas of log $xi =1.84^{+0.4}_{-0.2}$ $rm erg~cm~s^{-1}$. Despite the high intensity of the UV continuum in NGC 3783, F(1470 AA)=$8 times 10^{-14}~rm erg~cm^{-2}~s^{-1}~AA^{-1}$, the well known narrow UV absorption lines are deeper than in earlier observations in unobscured states, and low ionization species such as ion{C}{iii} appear, indicating that the narrow-line gas is more distant from the nucleus and is being shadowed by the gas producing the obscuration. Despite the high continuum flux levels in our observations of NGC 3783, moderate velocities in the UV broad line profiles have substantially diminished. We suggest that a collapse of the broad line region has led to the outburst and triggered the obscuring event.
We present ALMA observations of the CO(6-5) and [CII] emission lines and the sub-millimeter continuum of the $zsim6$ quasi-stellar object (QSO) SDSS J231038.88+185519.7. Compared to previous studies, we have analyzed a synthetic beam that is ten time s smaller in angular size, we have achieved ten times better sensitivity in the CO(6-5) line, and two and half times better sensitivity in the [CII] line, enabling us to resolve the molecular gas emission. We obtain a size of the dense molecular gas of $2.9pm0.5$ kpc, and of $1.4pm0.2$ kpc for the 91.5 GHz dust continuum. By assuming that CO(6-5) is thermalized, and by adopting a CO--to--$H_2$ conversion factor $rm alpha_{CO} = 0.8~ M_{odot}~K^{-1}~ (km/s)^{-1} ~pc^{2}$, we infer a molecular gas mass of $rm M(H_2)=(3.2 pm0.2) times 10^{10}rm M_{odot}$. Assuming that the observed CO velocity gradient is due to an inclined rotating disk, we derive a dynamical mass of $rm M_{dyn}~sin^2(i) = (2.4pm0.5) times 10^{10}~ M_{odot}$, which is a factor of approximately two smaller than the previously reported estimate based on [CII]. Regarding the central black hole, we provide a new estimate of the black hole mass based on the C~IV emission line detected in the X-SHOOTER/VLT spectrum: $rm M_{BH}=(1.8pm 0.5) times 10^{9}~ M_{odot}$. We find a molecular gas fraction of $rm mu=M(H_2)/M^*sim4.4$, where $rm M^*approx M_{dyn} - M(H_2)-M(BH)$. We derive a ratio $v_{rot}/sigma approx 1-2$ suggesting high gas turbulence, outflows/inflows and/or complex kinematics due to a merger event. We estimate a global Toomre parameter $Qsim 0.2-0.5$, indicating likely cloud fragmentation. We compare, at the same angular resolution, the CO(6-5) and [CII] distributions, finding that dense molecular gas is more centrally concentrated with respect to [CII]. We find that the current BH growth rate is similar to that of its host galaxy.
We present multi-frequency simultaneous VLBA observations at 15, 22 and 43 GHz towards the nucleus of the nearby radio galaxy NGC 1052. These three continuum images reveal a double-sided jet structure, whose relative intensity ratios imply that the j et axis is oriented close to the sky plane. The steeply rising spectra at 15-43 GHz at the inner edges of the jets strongly suggest that synchrotron emission is absorbed by foreground thermal plasma. We detected H_2O maser emission in the velocity range of 1550-1850 km/s, which is redshifted by 50-350 km/s with respect to the systemic velocity of NGC 1052. The redshifted maser gas appears projected against both sides of the jet, similar to the HI seen in absorption. The H_2O maser gas is located where the free-free absorption opacity is large. This probably implies that the masers in NGC 1052 are associated with a circumnuclear torus or disk as in the nucleus of NGC 4258. Such circumnuclear structure can be the sense of accreting onto the central engine.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا