ترغب بنشر مسار تعليمي؟ اضغط هنا

Glasses are solid materials whose constituent atoms are arranged in a disordered manner. The transition from a liquid to a glass remains one of the most poorly understood phenomena in condensed matter physics, and still no fully microscopic theory ex ists that can describe the dynamics of supercooled liquids in a quantitative manner over all relevant time scales. Here we present such a theoretical framework that yields near-quantitative accuracy for the time-dependent correlation functions of a supercooled system over a broad density range. Our approach requires only simple static structural information as input and is based entirely based on first principles. Owing to this first-principles nature, the framework offers a unique platform to study the relation between structure and dynamics in glass-forming matter, and paves the way towards a systematically correctable and ultimately fully quantitative theory of microscopic glassy dynamics.
The mode-coupling theory of the glass transition treats the dynamics of supercooled liquids in terms of two-point density correlation functions. Here we consider a generalized, hierarchical formulation of schematic mode-coupling equations in which th e full basis of multipoint density correlations is taken into account. By varying the parameters that control the effective contributions of higher-order correlations, we show that infinite hierarchies can give rise to both sharp and avoided glass transitions. Moreover, small changes in the form of the coefficients result in different scaling behaviors of the structural relaxation time, providing a means to tune the fragility in glass-forming materials. This demonstrates that the infinite-order construct of generalized mode-coupling theory constitutes a powerful and unifying framework for kinetic theories of the glass transition.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا