ﻻ يوجد ملخص باللغة العربية
Glasses are solid materials whose constituent atoms are arranged in a disordered manner. The transition from a liquid to a glass remains one of the most poorly understood phenomena in condensed matter physics, and still no fully microscopic theory exists that can describe the dynamics of supercooled liquids in a quantitative manner over all relevant time scales. Here we present such a theoretical framework that yields near-quantitative accuracy for the time-dependent correlation functions of a supercooled system over a broad density range. Our approach requires only simple static structural information as input and is based entirely based on first principles. Owing to this first-principles nature, the framework offers a unique platform to study the relation between structure and dynamics in glass-forming matter, and paves the way towards a systematically correctable and ultimately fully quantitative theory of microscopic glassy dynamics.
It was recently demonstrated that a simple Monte Carlo (MC) algorithm involving the swap of particle pairs dramatically accelerates the equilibrium sampling of simulated supercooled liquids. We propose two numerical schemes integrating the efficiency
We compare the spatial correlations of bond-breaking events and bond-orientational relaxation in a model two-dimensional liquid undergoing Newtonian dynamics. We find that the relaxation time of the bond-breaking correlation function is much longer t
Freezing is a fundamental physical phenomenon that has been studied over many decades; yet the role played by surfaces in determining nucleation has remained elusive. Here we report direct computational evidence of surface induced nucleation in super
A theoretical treatment of deeply supercooled liquids is difficult because their properties emerge from spatial inhomogeneities that are self-induced, transient, and nanoscopic. I use computer simulations to analyse self-induced static and dynamic he
The mode-coupling theory of the glass transition treats the dynamics of supercooled liquids in terms of two-point density correlation functions. Here we consider a generalized, hierarchical formulation of schematic mode-coupling equations in which th