ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the discovery of a giant stellar tidal stream in the halo of NGC 4631, a nearby edge-on spiral galaxy interacting with the spiral NGC 4656, in deep images taken with a 40-cm aperture robotic telescope. The stream has two components: a bridg e-like feature extended between NGC 4631 and NGC 4656 (stream_SE) and an overdensity with extended features on the opposite side of the NGC 4631 disk (stream_NW). Together, these features extend more than 85 kpc and display a clear (g-r) colour gradient. The orientation of stream_SE relative to the orientations of NGC 4631 and NGC 4656 is not consistent with an origin from interaction between these two spirals, and is more likely debris from a satellite encounter. The stellar tidal features can be qualitatively reproduced in an N-body model of the tidal disruption of a single, massive dwarf satellite on a moderately eccentric orbit (e=0.6) around NGC 4631 over $sim$ 3.5 Gyr, with a dynamical mass ratio (m1:m2) of ~40. Both modelling and inferences from the morphology of the streams indicate these are not associated with the complex HI tidal features observed between both spirals, which likely originate from a more recent, gas-rich accretion event. The detailed structure of stream_NW suggests it may contain the progenitor of the stream, in agreement with the N-body model. In addition, stream_NW is roughly aligned with two very faint dwarf spheroidal candidates. The system of dwarf galaxies and the tidal stream around NGC 4631 can provide an additional interesting case for exploring the anisotropy distribution of satellite galaxies recently reported in Local Group spiral galaxies by means of future follow-up observations.
A candidate diffuse stellar substructure was previously reported in the halo of the nearby dwarf starburst galaxy NGC 4449 by Karachentsev et al. We map and analyze this feature using a unique combination of deep integrated-light images from the Blac k Bird 0.5-meter telescope, and high-resolution wide-field images from the 8-meter Subaru telescope, which resolve the nebulosity into a stream of red giant branch stars, and confirm its physical association with NGC 4449. The properties of the stream imply a massive dwarf spheroidal progenitor, which after complete disruption will deposit an amount of stellar mass that is comparable to the existing stellar halo of the main galaxy. The ratio between luminosity or stellar-mass between the two galaxies is ~1:50, while the indirectly measured dynamical mass-ratio, when including dark matter, may be ~1:10-1:5. This system may thus represent a stealth merger, where an infalling satellite galaxy is nearly undetectable by conventional means, yet has a substantial dynamical influence on its host galaxy. This singular discovery also suggests that satellite accretion can play a significant role in building up the stellar halos of low-mass galaxies, and possibly in triggering their starbursts.
We present new deep observations of shell structures in the halo of the nearby elliptical galaxy NGC 7600, alongside a movie of galaxy formation in a cold dark matter universe (available at http://www.virgo.dur.ac.uk/shell-galaxies). The movie, based on an ab initio cosmological simulation, shows how continuous accretion of clumps of dark matter and stars creates a swath of diffuse circumgalactic structures. The disruption of a massive clump on a near-radial orbit creates a complex system of transient concentric shells which bare a striking resemblance to those of NGC 7600. With the aid of the simulation we interpret NGC 7600 in the context of the CDM model.
[Abridged] Within the hierarchical framework for galaxy formation, minor merging and tidal interactions are expected to shape all large galaxies to the present day. As a consequence, most seemingly normal disk galaxies should be surrounded by spatial ly extended stellar tidal features of low surface brightness. As part of a pilot survey for such interaction signatures, we have carried out ultra deep, wide field imaging of 8 isolated spiral galaxies in the Local Volume, with data taken at small (D=0.1-0.5m) robotic telescopes that provide exquisite surface brightness sensitivity (mu_V)~28.5$ mag/arcsec^2). This initial observational effort has led to the discovery of six previously undetected extensive (to ~30 kpc) stellar structures in the halos surrounding these galaxies, likely debris from tidally disrupted satellites. In addition, we confirm and clarify several enormous stellar over-densities previously reported in the literature, but never before interpreted as tidal streams. Even this pilot sample of galaxies exhibits strikingly diverse morphological characteristics of these extended stellar features: great circle-like features that resemble the Sagittarius stream surrounding the Milky Way, remote shells and giant clouds of presumed tidal debris far beyond the main stelar body, as well as jet-like features emerging from galactic disks. A qualitative comparison with available simulations set in a Lambda-Cold Dark Matter cosmology shows that the extraordinary variety of stellar morphologies detected in this pilot survey matches that seen in those simulations. The common existence of these tidal features around normal disk galaxies and the morphological match to the simulations constitutes new evidence that these theoretical models also apply to a large number of other Milky Way-mass disk galaxies in the Local Volume.
Within the hierarchical framework for galaxy formation, merging and tidal interactions are expected to shape large galaxies to this day. While major mergers are quite rare at present, minor mergers and satellite disruptions - which result in stellar streams - should be common, and are indeed seen in both the Milky Way and the Andromeda Galaxy. As a pilot study, we have carried out ultra-deep, wide-field imaging of some spiral galaxies in the Local Volume, which has revealed external views of such stellar tidal streams at unprecedented detail, with data taken at small robotic telescopes (0.1-0.5-meter) that provide exquisite surface brightness sensitivity. The goal of this project is to undertake the first systematic and comprehensive imaging survey of stellar tidal streams, from a sample of ~50 nearby Milky-Way-like spiral galaxies within 15 Mpc, that features a surface brightness sensitivity of ~ 30 mag/arcsec^2 The survey will result in estimates of the incidence, size/geometry and stellar luminosity/mass distribution of such streams. This will not only put our Milky Way and M31 in context but, for the first time, also provide an extensive statistical basis for comparison with state-of-the-art, self-consistent cosmological simulations of this phenomenon.
We report the discovery of a giant, loop-like stellar structure around the edge-on spiral galaxy NGC 4013. This arcing feature extends 6 arcmin (~26 kpc in projected distance) northeast from the center and 3 arcmin (~=12 kpc) from the disk plane; lik ely related features are also apparent on the southwest side of the disk, extending to 4 arcmin (~17 kpc). The detection of this low surface-brightness muR= 27.0+0.3-0.2 mag/sqarcsec) structure is independently confirmed in three separate datasets from three different telescopes. Although its true three dimensional geometry is unknown, the sky- projected morphology of this structure displays a match with the theoretical predictions for the edge-on, projected view of a stellar tidal streams of a dwarf satellite moving in a low inclined (~25deg), nearly circular orbit. Using the recent model of the Monoceros tidal stream in the Milky Way by Penarrubia et al. as template, we find that the progenitor system may have been a galaxy with an initial mass 6*10^8 Msun, of which current position and final fate is unknown. According to this simulation, the tidal stream may be approximately ~2.8 Gyr of age. Our results demonstrate that NGC 4013, previously considered a prototypical isolated disk galaxy in spite of having one of the most prominent HI warps detected thus far, may have in fact suffered a recent minor merger. This discovery highlights that undisturbed disks at high surface brightness levels in the optical but warped in HI maps may in fact reveal complex signatures of recent accretion events in deep photometric surveys.
We present an extragalactic perspective of an extended stellar tidal stream wrapping around the edge-on, spiral galaxy NGC 5907. Our deep images reveal for the first time a large scale complex of arcing loops that is an excellent example of how a low -mass satellite accretion can produce an interwoven, rosette-like structure of debris dispersed in the halo of its host galaxy. The existence of this structure, which has probably formed and survived for several Gigayears, confirms that halos of spiral galaxies in the Local Universe may still contain a significant number of galactic fossils from their hierarchical formation. To examine the validity of the external accretion scenario, we present N-body simulations of the tidal disruption of a dwarf galaxy-like system in a disk galaxy plus dark halo potential that demonstrate that most of the observed tidal features observed in NGC 5907 can be explained by a single accretion event. Unfortunately, with no kinematic data and only the projected geometry of the stream as constraint, the parameters of our model are considerably degenerate and, for now, must be considered illustrative only. Interestingly, NGC 5907 has long been considered a prototypical example of a warped spiral in relative isolation. The presence of an extended tidal stream challenges this picture and suggests that the gravitational perturbations induced by the stream progenitor may be the cause for the warp. The detection of an old, complex tidal stream in a nearby galaxy with rather modest instrumentation points to the viability of surveys to find extragalactic tidal substructures around spiral galaxies in the Local Volume (< 15 Mpc) -- with the prospect of obtaining a census with enough statistical significance to be compared with cosmological simulations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا