ترغب بنشر مسار تعليمي؟ اضغط هنا

81 - Sascha P. Quanz 2012
Results from gravitational microlensing suggested the existence of a large population of free-floating planetary mass objects. The main conclusion from this work was partly based on constraints from a direct imaging survey. This survey determined upp er limits for the frequency of stars that harbor giant exoplanets at large orbital separations. Aims. We want to verify to what extent upper limits from direct imaging do indeed constrain the microlensing results. We examine the current derivation of the upper limits used in the microlensing study and re-analyze the data from the corresponding imaging survey. We focus on the mass and semi-major axis ranges that are most relevant in context of the microlensing results. We also consider new results from a recent M-dwarf imaging survey as these objects are typically the host stars for planets detected by microlensing. We find that the upper limits currently applied in context of the microlensing results are probably underestimated. This means that a larger fraction of stars than assumed may harbor gas giant planets at larger orbital separations. Also, the way the upper limit is currently used to estimate the fraction of free-floating objects is not strictly correct. If the planetary surface density of giant planets around M-dwarfs is described as df_Planet ~ a^beta da, we find that beta ~ 0.5 - 0.6 is consistent with results from different observational studies probing semi-major axes between ~0.03 - 30 AU. Having a higher upper limit on the fraction of stars that may have gas giant planets at orbital separations probed by the microlensing data implies that more of the planets detected in the microlensing study are potentially bound to stars rather than free-floating. The current observational data are consistent with a rising planetary surface density for giant exoplanets around M-dwarfs out to ~30 AU.
We present new JHK spectroscopy (R ~ 5000) of GQ Lup b, acquired with the near-infrared integral field spectrograph NIFS and the adaptive optics system ALTAIR at the Gemini North telescope. Angular differential imaging was used in the J and H bands t o suppress the speckle noise from GQ Lup A; we show that this approach can provide improvements in signal-to-noise ratio (S/N) by a factor of 2 - 6 for companions located at subarcsecond separations. Based on high quality observations and GAIA synthetic spectra, we estimate the companion effective temperature to Teff = 2400 +/- 100 K, its gravity to log g = 4.0 +/- 0.5, and its luminosity to log(L/L_s) = -2.47 +/- 0.28. Comparisons with the predictions of the DUSTY evolutionary tracks allow us to constrain the mass of GQ Lup b to 8 - 60 MJup, most likely in the brown dwarf regime. Compared with the spectra published by Seifahrt and collaborators, our spectra of GQ Lup b are significantly redder (by 15 - 50%) and do not show important Pabeta emission. Our spectra are in excellent agreement with the lower S/N spectra previously published by McElwain and collaborators.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا