ترغب بنشر مسار تعليمي؟ اضغط هنا

Deeply supercooled water exhibits complex dynamics with large density fluctuations, ice coarsening and characteristic time scales extending from picoseconds to milliseconds. Here, we discuss implications of these time scales as they pertain to two-ph ase coexistence and to molecular simulations of supercooled water. Specifically, we argue that it is possible to discount liquid-liquid criticality because the time scales imply that correlation lengths for such behavior would be bounded by no more than a few nanometers. Similarly, it is possible to discount two-liquid coexistence because the time scales imply a bounded interfacial free energy that cannot grow in proportion to a macroscopic surface area. From time scales alone, therefore, we see that coexisting domains of differing density in supercooled water can be no more than nano-scale transient fluctuations.
141 - David Chandler 2014
The recent paper cited above claims that a molecular simulation of one specific model of supercooled water establishes a stable interface separating two metastable liquid phases, which would imply the existence of metastable two-liquid criticality fo r that model. Here, we note that this claim conflicts with fundamental principles and with earlier work published in the textit{Journal of Chemical Physics}, and we show that the claim is unjustified by the data put forward to support the conclusion. Other technical problems are also noted.
This article is a brief Retrospective on the life and work of Robert W. Zwanzig, who formulated nonequilibrium statistical mechanics and who passed away in May of this year.
We use transition path sampling to study evaporation in the SPC/E model of liquid water. Based on thousands of evaporation trajectories, we characterize the members of the transition state ensemble (TSE), which exhibit a liquid-vapor interface with p redominantly negative mean curvature at the site of evaporation. We also find that after evaporation is complete, the distributions of translational and angular momenta of the evaporated water are Maxwellian with a temperature equal to that of the liquid. To characterize the evaporation trajectories in their entirety, we find that it suffices to project them onto just two coordinates: the distance of the evaporating molecule to the instantaneous liquid-vapor interface, and the velocity of the water along the average interface normal. In this projected space, we find that the TSE is well-captured by a simple model of ballistic escape from a deep potential well, with no additional barrier to evaporation beyond the cohesive strength of the liquid. Equivalently, they are consistent with a near-unity probability for a water molecule impinging upon a liquid droplet to condense. These results agree with previous simulations and with some, but not all, recent experiments.
Water density fluctuations are an important statistical mechanical observable that is related to many-body correlations, as well as hydrophobic hydration and interactions. Local water density fluctuations at a solid-water surface have also been propo sed as a measure of its hydrophobicity. These fluctuations can be quantified by calculating the probability, $P_v(N)$, of observing $N$ waters in a probe volume of interest $v$. When $v$ is large, calculating $P_v(N)$ using molecular dynamics simulations is challenging, as the probability of observing very few waters is exponentially small, and the standard procedure for overcoming this problem (umbrella sampling in $N$) leads to undesirable impulsive forces. Patel et al. [J. Phys. Chem. B, 114, 1632 (2010)] have recently developed an indirect umbrella sampling (INDUS) method, that samples a coarse-grained particle number to obtain $P_v(N)$ in cuboidal volumes. Here, we present and demonstrate an extension of that approach to other basic shapes, like spheres and cylinders, as well as to collections of such volumes. We further describe the implementation of INDUS in the NPT ensemble and calculate $P_v(N)$ distributions over a broad range of pressures. Our method may be of particular interest in characterizing the hydrophobicity of interfaces of proteins, nanotubes and related systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا