ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared interferometry is a new frontier for precision ground based observing, with new instrumentation achieving milliarcsecond (mas) spatial resolutions for faint sources, along with astrometry on the order of 10 microarcseconds. This technique ha s already led to breakthroughs in the observations of the supermassive black hole at the Galactic centre and its orbiting stars, AGN, and exo-planets, and can be employed for studying X-ray binaries (XRBs), microquasars in particular. Beyond constraining the orbital parameters of the system using the centroid wobble and spatially resolving jet discrete ejections on mas scales, we also propose a novel method to discern between the various components contributing to the infrared bands: accretion disk, jets and companion star. We demonstrate that the GRAVITY instrument on the Very Large Telescope Interferometer (VLTI) should be able to detect a centroid shift in a number of sources, opening a new avenue of exploration for the myriad of transients expected to be discovered in the coming decade of radio all-sky surveys. We also present the first proof-of-concept GRAVITY observation of a low-mass X-ray binary transient, MAXI J1820+070, to search for extended jets on mas scales. We place the tightest constraints yet via direct imaging on the size of the infrared emitting region of the compact jet in a hard state XRB.
Compact, continuously launched jets in black hole X-ray binaries (BHXBs) produce radio to optical-infrared synchrotron emission. In most BHXBs, an infrared (IR) excess (above the disc component) is observed when the jet is present in the hard spectra l state. We investigate why some BHXBs have prominent IR excesses and some do not, quantified by the amplitude of the IR quenching or recovery over the transition from/to the hard state. We find that the amplitude of the IR excess can be explained by inclination dependent beaming of the jet synchrotron emission, and the projected area of the accretion disc. Furthermore, we see no correlation between the expected and the observed IR excess for Lorentz factor 1, which is strongly supportive of relativistic beaming of the IR emission, confirming that the IR excess is produced by synchrotron emission in a relativistic outflow. Using the amplitude of the jet fade and recovery over state transitions and the known orbital parameters, we constrain for the first time the bulk Lorentz factor range of compact jets in several BHXBs (with all the well-constrained Lorentz factors lying in the range of $Gamma$ = 1.3 - 3.5). Under the assumption that the Lorentz factor distribution of BHXB jets is a power-law, we find that N($Gamma$) $propto Gamma^{ -1.88^{+0.27}_{-0.34}}$. We also find that the very high amplitude IR fade/recovery seen repeatedly in the BHXB GX 339-4 favors a low inclination angle ($< 15^circ$) of the jet.
Disc instability models predict that for X-ray binaries in quiescence, there should be a brightening of the optical flux prior to an X-ray outburst. Tracking the X-ray variations of X-ray binaries in quiescence is generally not possible, so optical m onitoring provides the best means to measure the mass accretion rate variability between outbursts, and to identify the beginning stages of new outbursts. With our regular Faulkes Telescope/Las Cumbres Observatory (LCO) monitoring we are routinely detecting the optical rise of new X-ray binary outbursts before they are detected by X-ray all-sky monitors. We present examples of detections of an optical rise in X-ray binaries prior to X-ray detection. We also present initial optical monitoring of the new black hole transient MAXI J1820+070 (ASASSN-18ey) with the Faulkes, LCO telescopes and Al Sadeem Observatory in Abu Dhabi, UAE. Finally, we introduce our new real-time data analysis pipeline, the X-ray Binary New Early Warning System (XB-NEWS) which aims to detect and announce new X-ray binary outbursts within a day of first optical detection. This will allow us to trigger X-ray and multi-wavelength campaigns during the very early stages of outbursts, to constrain the outburst triggering mechanism.
Recently, evidence for synchrotron emission in both black hole and neutron star X-ray binaries has been mounting, from optical/infrared spectral, polarimetric, and fast timing signatures. The synchrotron emission of jets can be highly linearly polari sed, depending on the configuration of the magnetic field. Optical and infrared (OIR) polarimetric observations of X-ray binaries are presented in this brief review. The OIR polarimetric signature of relativistic jets is detected at levels of ~ 1-10 %, similar to AGN cores. This reveals that the magnetic geometry in the compact jets may be similar for supermassive and stellar-mass BHs. The magnetic fields near the jet base in most of these systems appear to be turbulent, variable and on average, aligned with the jet axis, although there are some exceptions. These measurements probe the physical conditions in the accretion (out)flow and demonstrate a new way of connecting inflow and outflow, using both rapid timing and polarisation. Variations in polarisation could be due to rapid changes of the ordering of the magnetic field in the emitting region, or in one case, flares from individual ejections or collisions between ejecta. It is predicted that in some cases, variable levels of X-ray polarisation from synchrotron emission originating in jets will be detected from accreting Galactic black holes with upcoming spaceborne X-ray polarimeters.
We present six years of optical monitoring of the black hole candidate X-ray binary Swift J1357.2-0933, during and since its discovery outburst in 2011. On these long timescales, the quiescent light curve is dominated by high amplitude, short term (s econds-days) variability spanning ~ 2 magnitudes, with an increasing trend of the mean flux from 2012 to 2017 that is steeper than in any other X-ray binary found to date (0.17 mag/yr). We detected the initial optical rise of the 2017 outburst of Swift J1357.2-0933, and we report that the outburst began between April 1 and 6, 2017. Such a steep optical flux rise preceding an outburst is expected according to disk instability models, but the high amplitude variability in quiescence is not. Previous studies have shown that the quiescent spectral, polarimetric and rapid variability properties of Swift J1357.2-0933 are consistent with synchrotron emission from a weak compact jet. We find that a variable optical/infrared spectrum is responsible for the brightening: a steep, red spectrum before and soon after the 2011 outburst evolves to a brighter, flatter spectrum since 2013. The evolving spectrum appears to be due to the jet spectral break shifting from the infrared in 2012 to the optical in 2013, then back to the infrared by 2016-2017 while the optical remains relatively bright. Swift J1357.2-0933 is a valuable source to study black hole jet physics at very low accretion rates, and is possibly the only quiescent source in which the optical jet properties can be regularly monitored.
We provide new observations of the LMC X-1 O star and its extended nebula structure using spectroscopic data from VLT/UVES as well as H$alpha$ imaging from the Wide Field Imager on the Max Planck Gesellschaft / European Southern Observatory 2.2m tele scope and ATCA imaging of the 2.1 GHz radio continuum. This nebula is one of the few known to be energized by an X-ray binary. We use a new spectrum extraction technique that is superior to other methods to obtain both radial velocities and fluxes. This provides an updated spatial velocity of $simeq 21.0~pm~4.8$ km s$^{-1}$ for the O star. The slit encompasses both the photo-ionized and shock-ionized regions of the nebula. The imaging shows a clear arc-like structure reminiscent of a wind bow shock in between the ionization cone and shock-ionized nebula. The observed structure can be fit well by the parabolic shape of a wind bow shock. If an interpretation of a wind bow shock system is valid, we investigate the N159-O1 star cluster as a potential parent of the system, suggesting a progenitor mass of $sim 60$ M$_{odot}$ for the black hole. We further note that the radio emission could be non-thermal emission from the wind bow shock, or synchrotron emission associated with the jet inflated nebula. For both wind and jet-powered origins, this would represent one of the first radio detections of such a structure.
We present near-infrared polarimetric observations of the black hole X-ray binaries Swift J1357.2-0933 and A0620-00. In both sources, recent studies have demonstrated the presence of variable infrared synchrotron emission in quiescence, most likely f rom weak compact jets. For Swift J1357.2-0933 we find that the synchrotron emission is polarized at a level of 8.0 +- 2.5 per cent (a 3.2 sigma detection of intrinsic polarization). The mean magnitude and rms variability of the flux (fractional rms of 19-24 per cent in K_s-band) agree with previous observations. These properties imply a continuously launched (stable on long timescales), highly variable (on short timescales) jet in the Swift J1357.2-0933 system in quiescence, which has a moderately tangled magnetic field close to the base of the jet. We find that for A0620-00, there are likely to be three components to the optical-infrared polarization; interstellar dust along the line of sight, scattering within the system, and an additional source that changes the polarization position angle in the reddest (H and K_s) wave-bands. We interpret this as a stronger contribution of synchrotron emission, and by subtracting the line-of-sight polarization, we measure an excess of ~ 1.25 +- 0.28 per cent polarization and a position angle of the magnetic field vector that is consistent with being parallel with the axis of the resolved radio jet. These results imply that weak jets in low luminosity accreting systems have magnetic fields which possess similarly tangled fields compared to the more luminous, hard state jets in X-ray binaries.
Polarization measurements of the microquasar Cygnus X-1 exist at gamma-ray, X-ray, UV, optical and radio frequencies. The gamma-ray emission has been shown to be highly linearly polarized. Here, we present new infrared polarimetric data of Cygnus X-1 taken with the 10.4-m Gran Telescopio Canarias and the 4.2-m William Herschel Telescope. We show that the broadband, radio to gamma-ray flux spectrum and polarization spectrum in the hard state are largely consistent with a simple phenomenological model of a strongly polarized synchrotron jet, an unpolarized Comptonized corona and a moderately polarized interstellar dust component. In this model, the origin of the gamma-ray, X-ray and some of the infrared polarization is the optically thin synchrotron power law from the inner regions of the jet. The model requires the magnetic field in this region to be highly ordered and perpendicular to the axis of the resolved radio jet. This differs to studies of some other X-ray binaries, in which the magnetic field is turbulent, variable and aligned with the jet axis. The model is able to explain the approximate polarization strength and position angle at all wavelengths including the detected X-ray (3 - 5 keV) polarization, except the observed position angle of the gamma-ray polarization, which differs to the model by ~ 60 degrees. Past numerical modelling has shown that a curved synchrotron spectrum can produce a shift in position angle by ~ 60 degrees, which may account for this.
New optical narrowband imaging observations of the fields of several ULXs are presented. Known supershell nebulae are associated with a number of these ULXs, which we detect in emission line filters such as [S II], He II, [O II] and [O III]. New nebu lae are discovered, which are candidate ULX-powered supershells. The morphologies and emission line fluxes of these nebulae could then be used to infer the properties of the emitting gas, which gives clues to the energizing source (photoionization and/or shock-excitation, both possibly from the ULX). Studies of supershells powered by ULXs can help to constrain the nature of ULXs themselves, such as the isotropy of the X-ray emission and the strength of their outflows.
Synchrotron emission from jets produced by X-ray binaries can be detected at optical and infrared (IR) frequencies. I show that optical/IR colour-magnitude diagrams of the outbursts of nine X-ray binaries successfully separate thermal disc emission f rom non-thermal jet emission, in both black hole and neutron star sources. A heated single-temperature blackbody is able to reproduce the observed relations between colour and magnitude, except when excursions are made to a redder colour than expected, which is due to jet emission. The general picture that is developed is then incorporated into the unified picture of disc-jet behaviour in black hole X-ray binaries. At a given position of a source in the X-ray hardness-intensity diagram, the radio, IR and optical properties can be inferred. Similarly, it is possible to predict the X-ray and radio luminosities and spectral states from optical/IR monitoring.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا