ترغب بنشر مسار تعليمي؟ اضغط هنا

We predict cosmological constraints for forthcoming surveys using Superluminous Supernovae (SLSNe) as standardisable candles. Due to their high peak luminosity, these events can be observed to high redshift (z~3), opening up new possibilities to prob e the Universe in the deceleration epoch. We describe our methodology for creating mock Hubble diagrams for the Dark Energy Survey (DES), the Search Using DECam for Superluminous Supernovae (SUDSS) and a sample of SLSNe possible from the Large Synoptic Survey Telescope (LSST), exploring a range of standardisation values for SLSNe. We include uncertainties due to gravitational lensing and marginalise over possible uncertainties in the magnitude scale of the observations (e.g. uncertain absolute peak magnitude, calibration errors). We find that the addition of only ~100 SLSNe from SUDSS to 3800 Type Ia Supernovae (SNe Ia) from DES can improve the constraints on w and Omega_m by at least 20% (assuming a flat wCDM universe). Moreover, the combination of DES SNe Ia and 10,000 LSST-like SLSNe can measure Omega_m and w to 2% and 4% respectively. The real power of SLSNe becomes evident when we consider possible temporal variations in w(a), giving possible uncertainties of only 2%, 5% and 14% on Omega_m, w_0 and w_a respectively, from the combination of DES SNe Ia, LSST-like SLSNe and Planck. These errors are competitive with predicted Euclid constraints, indicating a future role for SLSNe for probing the high redshift Universe.
141 - Matt J. Jarvis 2015
Radio continuum surveys have, in the past, been of restricted use in cosmology. Most studies have concentrated on cross-correlations with the cosmic microwave background to detect the integrated Sachs-Wolfe effect, due to the large sky areas that can be surveyed. As we move into the SKA era, radio continuum surveys will have sufficient source density and sky area to play a major role in cosmology on the largest scales. In this chapter we summarise the experiments that can be carried out with the SKA as it is built up through the coming decade. We show that the SKA can play a unique role in constraining the non-Gaussianity parameter to sigma(f_NL) ~ 1, and provide a unique handle on the systematics that inhibit weak lensing surveys. The SKA will also provide the necessary data to test the isotropy of the Universe at redshifts of order unity and thus evaluate the robustness of the cosmological principle.Thus, SKA continuum surveys will turn radio observations into a central probe of cosmological research in the coming decades.
Gravitational lensing by large-scale structure induces weak coherent alignments in the shapes of background galaxies. Here we present evidence for the detection of this `cosmic shear at the 3.4 sigma significance level with the William Herschel Teles cope. Analysis and removal of notable systematic effects, such as shear induced by telescope optics and smearing by tracking and seeing, are conducted in order to recover the physical weak shear signal. Positive results for shear recovery on realistic simulated data are presented, enhancing confidence in the measurement method. The detection of cosmic shear is statistically characterised, and its cosmological significance is discussed.
261 - David Bacon 2000
(Abridged) Weak gravitational lensing induces distortions on the images of background galaxies, and thus provides a direct measure of mass fluctuations in the universe. Since the distortions induced by lensing on the images of background galaxies are only of a few percent, a reliable measurement demands very accurate galaxy shape estimation and a careful treatment of systematic effects. Here, we present a study of a shear measurement method using detailed simulations of artificial images. The images are produced using realisations of a galaxy ensemble drawn from the HST Groth strip. We consider realistic observational effects including atmospheric seeing, PSF anisotropy and pixelisation, incorporated in a manner to reproduce actual observations with the William Herschel Telescope. By applying an artificial shear to the simulated images, we test the shear measurement method proposed by Kaiser, Squires & Broadhurst (1995, KSB). Overall, we find the KSB method to be reliable with several provisos. To guide future weak lensing surveys, we study how seeing size, exposure time and pixelisation affect the sensitivity to shear. In addition, we study the impact of overlapping isophotes of neighboring galaxies, and find that this effect can produce spurious lensing signals on small scales. We discuss the prospects of using the KSB method for future, more sensitive, surveys. Numerical simulations of this kind are a required component of present and future analyses of weak lensing surveys.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا