ﻻ يوجد ملخص باللغة العربية
Radio continuum surveys have, in the past, been of restricted use in cosmology. Most studies have concentrated on cross-correlations with the cosmic microwave background to detect the integrated Sachs-Wolfe effect, due to the large sky areas that can be surveyed. As we move into the SKA era, radio continuum surveys will have sufficient source density and sky area to play a major role in cosmology on the largest scales. In this chapter we summarise the experiments that can be carried out with the SKA as it is built up through the coming decade. We show that the SKA can play a unique role in constraining the non-Gaussianity parameter to sigma(f_NL) ~ 1, and provide a unique handle on the systematics that inhibit weak lensing surveys. The SKA will also provide the necessary data to test the isotropy of the Universe at redshifts of order unity and thus evaluate the robustness of the cosmological principle.Thus, SKA continuum surveys will turn radio observations into a central probe of cosmological research in the coming decades.
Weak gravitational lensing is a powerful probe of cosmology and has emerged as a key probe for the Dark Universe. Up till now this science has been conducted mainly at optical wavelengths. Current upgraded and future radio facilities will provide gre
Continuum and HI surveys with the Square Kilometre Array (SKA) will allow us to probe some of the most fundamental assumptions of modern cosmology, including the Cosmological Principle. SKA all-sky surveys will map an enormous slice of space-time and
The Planck CMB experiment has delivered the best constraints so far on primordial non-Gaussianity, ruling out early-Universe models of inflation that generate large non-Gaussianity. Although small improvements in the CMB constraints are expected, the
We present forecasts for constraints on cosmological models which can be obtained by forthcoming radio continuum surveys: the wide surveys with the LOw Frequency ARray (LOFAR), Australian Square Kilometre Array Pathfinder (ASKAP) and the Westerbork O
In the lead-up to the Square Kilometre Array (SKA) project, several next-generation radio telescopes and upgrades are already being built around the world. These include APERTIF (The Netherlands), ASKAP (Australia), eMERLIN (UK), VLA (USA), e-EVN (ba