ترغب بنشر مسار تعليمي؟ اضغط هنا

The Wright-Fisher family of diffusion processes is a widely used class of evolutionary models. However, simulation is difficult because there is no known closed-form formula for its transition function. In this article we demonstrate that it is in fa ct possible to simulate exactly from a broad class of Wright-Fisher diffusion processes and their bridges. For those diffusions corresponding to reversible, neutral evolution, our key idea is to exploit an eigenfunction expansion of the transition function; this approach even applies to its infinite-dimensional analogue, the Fleming-Viot process. We then develop an exact rejection algorithm for processes with more general drift functions, including those modelling natural selection, using ideas from retrospective simulation. Our approach also yields methods for exact simulation of the moment dual of the Wright-Fisher diffusion, the ancestral process of an infinite-leaf Kingman coalescent tree. We believe our new perspective on diffusion simulation holds promise for other models admitting a transition eigenfunction expansion.
Full likelihood inference under Kingmans coalescent is a computationally challenging problem to which importance sampling (IS) and the product of approximate conditionals (PAC) method have been applied successfully. Both methods can be expressed in t erms of families of intractable conditional sampling distributions (CSDs), and rely on principled approximations for accurate inference. Recently, more general $Lambda$- and $Xi$-coalescents have been observed to provide better modelling fits to some genetic data sets. We derive families of approximate CSDs for finite sites $Lambda$- and $Xi$-coalescents, and use them to obtain approximately optimal IS and PAC algorithms for $Lambda$-coalescents, yielding substantial gains in efficiency over existing methods.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا