ترغب بنشر مسار تعليمي؟ اضغط هنا

67 - Liying Bao , Bo Qi , Daoyi Dong 2021
Distinct non-Hermitian dynamics has demonstrated its advantages in improving measurement precision over traditional sensing protocols. Multi-mode non-Hermitian lattice dynamics can provide exponentially-enhanced quantum sensing where the quantum Fish er information (QFI) per photon increases exponentially with the lattice size. However, somewhat surprisingly, it was also shown that the quintessential non-Hermitian skin effect does not provide any true advantage. In this paper, we demonstrate the importance of optimizing the phase of the coherent drive, and the position of the injection and detection in multi-mode non-Hermitian quantum sensing. The QFI per photon can be exponentially-enhanced or exponentially-reduced depending on parameters of the drive and detection. Specifically, it is demonstrated that for large amplification by choosing appropriate coherent drive parameters, the non-Hermitian skin effect can provide exponentially-enhanced quantum sensing. Moreover, in the regime beyond linear response, skin-effect can also provide a dramatic advantage as compared to the local perturbation, and the proposed protocol is robust in tuning the amplification factor.
In cellular-connected unmanned aerial vehicle (UAV) network, a minimization problem on the weighted sum of time cost and expected outage duration is considered. Taking advantage of UAVs adjustable mobility, an intelligent UAV navigation approach is f ormulated to achieve the aforementioned optimization goal. Specifically, after mapping the navigation task into a Markov decision process (MDP), a deep reinforcement learning (DRL) solution with novel quantum-inspired experience replay (QiER) framework is proposed to help the UAV find the optimal flying direction within each time slot, and thus the designed trajectory towards the destination can be generated. Via relating experienced transitions importance to its associated quantum bit (qubit) and applying Grover iteration based amplitude amplification technique, the proposed DRL-QiER solution can commit a better trade-off between sampling priority and diversity. Compared to several representative baselines, the effectiveness and supremacy of the proposed DRL-QiER solution are demonstrated and validated in numerical results.
73 - Yiwei Chen , Yu Pan , Daoyi Dong 2021
Tensor Train (TT) approach has been successfully applied in the modelling of the multilinear interaction of features. Nevertheless, the existing models lack flexibility and generalizability, as they only model a single type of high-order correlation. In practice, multiple multilinear correlations may exist within the features. In this paper, we present a novel Residual Tensor Train (ResTT) which integrates the merits of TT and residual structure to capture the multilinear feature correlations, from low to higher orders, within the same model. In particular, we prove that the fully-connected layer in neural networks and the Volterra series can be taken as special cases of ResTT. Furthermore, we derive the rule for weight initialization that stabilizes the training of ResTT based on a mean-field analysis. We prove that such a rule is much more relaxed than that of TT, which means ResTT can easily address the vanishing and exploding gradient problem that exists in the current TT models. Numerical experiments demonstrate that ResTT outperforms the state-of-the-art tensor network approaches, and is competitive with the benchmark deep learning models on MNIST and Fashion-MNIST datasets.
Quantum detector tomography is a fundamental technique for calibrating quantum devices and performing quantum engineering tasks. In this paper, we design optimal probe states for detector estimation based on the minimum upper bound of the mean square d error (UMSE) and the maximum robustness. We establish the minimum UMSE and the minimum condition number for quantum detectors and provide concrete examples that can achieve optimal detector tomography. In order to enhance estimation precision, we also propose a two-step adaptive detector tomography algorithm and investigate how this adaptive strategy can be used to achieve efficient estimation of quantum detectors. Moreover, the superposition of coherent states are used as probe states for quantum detector tomography and the estimation error is analyzed. Numerical results demonstrate the effectiveness of both the proposed optimal and adaptive quantum detector tomography methods.
97 - Liying Bao , Bo Qi , Daoyi Dong 2021
Non-Hermitian dynamics has been widely studied to enhance the precision of quantum sensing; and non-reciprocity can be a powerful resource for non-Hermitian quantum sensing, as non-reciprocity allows to arbitrarily exceed the fundamental bound on the measurement rate of any reciprocal sensors. Here we establish fundamental limits on signal-to-noise ratio for reciprocal and non-reciprocal non-Hermitian quantum sensing. In particular, for two-mode linear systems with two coherent drives, an approximately attainable uniform bound on the best possible measurement rate per photon is derived for both reciprocal and non-reciprocal sensors. This bound is only related to the coupling coefficients and, in principle, can be made arbitrarily large. Our results thus demonstrate that a conventional reciprocal sensor with two drives can simulate any non-reciprocal sensor. This work also demonstrates a clear signature on how the excitation signals affect the signal-to-noise ratio in non-Hermitian quantum sensing.
In this note, we are concerned with dark modes in a class of non-Markovian open quantum systems. Based on a microscopic model, a time-convoluted linear quantum stochastic differential equation and an output equation are derived to describe the system dynamics. The definition of dark modes is given building on the input-output structure of the system. Then, we present a necessary and sufficient condition for the existence of dark modes. Also, the problem of dark mode synthesis via Hamiltonian engineering is constructively solved and an example is presented to illustrate our results.
136 - Daoyi Dong 2021
This paper provides a brief introduction to learning control of quantum systems. In particular, the following aspects are outlined, including gradient-based learning for optimal control of quantum systems, evolutionary computation for learning contro l of quantum systems, learning-based quantum robust control, and reinforcement learning for quantum control.
Deep reinforcement learning has been recognized as an efficient technique to design optimal strategies for different complex systems without prior knowledge of the control landscape. To achieve a fast and precise control for quantum systems, we propo se a novel deep reinforcement learning approach by constructing a curriculum consisting of a set of intermediate tasks defined by a fidelity threshold. Tasks among a curriculum can be statically determined using empirical knowledge or adaptively generated with the learning process. By transferring knowledge between two successive tasks and sequencing tasks according to their difficulties, the proposed curriculum-based deep reinforcement learning (CDRL) method enables the agent to focus on easy tasks in the early stage, then move onto difficult tasks, and eventually approaches the final task. Numerical simulations on closed quantum systems and open quantum systems demonstrate that the proposed method exhibits improved control performance for quantum systems and also provides an efficient way to identify optimal strategies with fewer control pulses.
Evolution strategies (ES), as a family of black-box optimization algorithms, recently emerge as a scalable alternative to reinforcement learning (RL) approaches such as Q-learning or policy gradient, and are much faster when many central processing u nits (CPUs) are available due to better parallelization. In this paper, we propose a systematic incremental learning method for ES in dynamic environments. The goal is to adjust previously learned policy to a new one incrementally whenever the environment changes. We incorporate an instance weighting mechanism with ES to facilitate its learning adaptation, while retaining scalability of ES. During parameter updating, higher weights are assigned to instances that contain more new knowledge, thus encouraging the search distribution to move towards new promising areas of parameter space. We propose two easy-to-implement metrics to calculate the weights: instance novelty and instance quality. Instance novelty measures an instances difference from the previous optimum in the original environment, while instance quality corresponds to how well an instance performs in the new environment. The resulting algorithm, Instance Weighted Incremental Evolution Strategies (IW-IES), is verified to achieve significantly improved performance on a suite of robot navigation tasks. This paper thus introduces a family of scalable ES algorithms for RL domains that enables rapid learning adaptation to dynamic environments.
147 - Yiwei Chen , Yu Pan , Daoyi Dong 2020
Quantum Language Models (QLMs) in which words are modelled as quantum superposition of sememes have demonstrated a high level of model transparency and good post-hoc interpretability. Nevertheless, in the current literature word sequences are basical ly modelled as a classical mixture of word states, which cannot fully exploit the potential of a quantum probabilistic description. A full quantum model is yet to be developed to explicitly capture the non-classical correlations within the word sequences. We propose a neural network model with a novel Entanglement Embedding (EE) module, whose function is to transform the word sequences into entangled pure states of many-body quantum systems. Strong quantum entanglement, which is the central concept of quantum information and an indication of parallelized correlations among the words, is observed within the word sequences. Numerical experiments show that the proposed QLM with EE (QLM-EE) achieves superior performance compared with the classical deep neural network models and other QLMs on Question Answering (QA) datasets. In addition, the post-hoc interpretability of the model can be improved by quantizing the degree of entanglement among the words.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا