ترغب بنشر مسار تعليمي؟ اضغط هنا

We provide the two-loop corrections to the Higgs boson masses of the CP-violating NMSSM in the Feynman diagrammatic approach with vanishing external momentum at ${cal O} (alpha_t alpha_s)$. The adopted renormalization scheme is a mixture between $ove rline{text{DR}}$ and on-shell conditions. Additionally, the renormalization of the top/stop sector is provided both for the $overline{text{DR}}$ and the on-shell scheme. The calculation is performed in the gaugeless limit. We find that the two-loop corrections compared to the one-loop corrections are of the order of 5-10%, depending on the top/stop renormalization scheme. The theoretical error on the Higgs boson masses is reduced due to the inclusion of these higher order corrections.
The tri-boson production is one of the key processes for the study of quartic gauge couplings. Next-to-leading order (NLO) corrections are mandatory to reduce theoretical uncertainties. In this study, the most up-to-date predictions including NLO QCD and NLO EW corrections to the total cross section and distributions of the WWZ production at the LHC are presented. We show that the QCD correction is about 100% and the EW correction is of a few percent at the total cross section level. The EW correction however becomes significant in the high energy regime of the gauge boson transverse momentum distributions.
The production of WWZ at the LHC is an important process to test the quartic gauge couplings of the Standard Model as well as an important background for new physics searches. A good theoretical understanding at next-to-leading order (NLO) is therefo re valuable. In this paper, we present the calculation of the NLO electroweak (EW) correction to this channel with on-shell gauge bosons in the final state. It is then combined with the NLO QCD correction to get the most up-to-date prediction. We study the impact of these corrections on the total cross section and some distributions. The NLO EW correction is small for the total cross section but becomes important in the high energy regime for the gauge boson transverse momentum distributions.
After the discovery of a Higgs-like boson by the LHC experiments ATLAS and CMS, it is of crucial importance to determine its properties in order to not only identify it as the boson responsible for electroweak symmetry breaking but also to clarify th e question if it is a Standard Model (SM) Higgs boson or the Higgs particle of some extension beyond the SM as {it e.g.} supersymmetry. In this context, the precise prediction of the Higgs parameters as masses and couplings play a crucial role for the proper distinction between different models. In extension of previous works on the loop-corrected Higgs boson masses of the Next-to-Minimal Supersymmetric Extension of the SM (NMSSM), we present here the calculation of the loop-corrected trilinear NMSSM Higgs self-couplings. The loop corrections turn out to have a substantial impact on the decay widths of Higgs-to-Higgs decays and on the production cross section of Higgs pairs via gluon fusion. They are therefore indispensable for the correct interpretation of the experimental Higgs results.
The dominant contribution to $H^- tbar{b}$ production at the LHC is the gluon-gluon fusion parton subprocess. We perform for the case of the complex MSSM a complete calculation of the NLO electroweak contributions to this channel. The other small con tributions with quarks or photon in the initial state are calculated at tree level. The results are improved by using the effective bottom-Higgs couplings to resum the leading radiative corrections. We find that, beyond these leading corrections, the NLO electroweak contributions can be still be significant. The effect of the complex phases of the soft-breaking parameters is found to be sizable.
The dominant contributions to W-+ H+- production at the LHC are the tree-level b anti-b annihilation and the gg fusion. We perform for the case of the complex MSSM a complete calculation of the NLO EW corrections to the b anti-b annihilation channel and a consistent combination with other contributions including the standard and SUSY QCD corrections and the gg fusion, with resummation of the leading radiative corrections to the bottom-Higgs couplings and the neutral Higgs-boson propagators. We observe a large CP-violating asymmetry, arising mainly from the gg channel.
We present a new Fortran code to calculate the scalar one-loop four-point integral with complex internal masses, based on the method of t Hooft and Veltman. The code is applicable when the external momenta fulfill a certain physical condition. In par ticular it holds if one of the external momenta or a sum of them is timelike or lightlike and therefore covers all physical processes at colliders. All the special cases related to massless external particles are treated separately. Some technical issues related to numerical evaluation and Landau singularities are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا