ترغب بنشر مسار تعليمي؟ اضغط هنا

Robotic assembly planning has the potential to profoundly change how buildings can be designed and created. It enables architects to explicitly account for the assembly process already during the design phase, and enables efficient building methods t hat profit from the robots different capabilities. Previous work has addressed planning of robot assembly sequences and identifying the feasibility of architectural designs. This paper extends previous work by enabling assembly planning with large, heterogeneous teams of robots. We present a scalable planning system which enables parallelization of complex task and motion planning problems by iteratively solving smaller sub-problems. Combining optimization methods to solve for manipulation constraints with a sampling-based bi-directional space-time path planner enables us to plan cooperative multi-robot manipulation with unknown arrival-times. Thus, our solver allows for completing sub-problems and tasks with differing timescales and synchronizes them effectively. We demonstrate the approach on multiple case-studies and on two long-horizon building assembly scenarios to show the robustness and scalability of our algorithm.
Robotic manipulation of unknown objects is an important field of research. Practical applications occur in many real-world settings where robots need to interact with an unknown environment. We tackle the problem of reactive grasping by proposing a m ethod for unknown object tracking, grasp point sampling and dynamic trajectory planning. Our object tracking method combines Siamese Networks with an Iterative Closest Point approach for pointcloud registration into a method for 6-DoF unknown object tracking. The method does not require further training and is robust to noise and occlusion. We propose a robotic manipulation system, which is able to grasp a wide variety of formerly unseen objects and is robust against object perturbations and inferior grasping points.
Integrating robotic systems in architectural and construction processes is of core interest to increase the efficiency of the building industry. Automated planning for such systems enables design analysis tools and facilitates faster design iteration cycles for designers and engineers. However, generic task-and-motion planning (TAMP) for long-horizon construction processes is beyond the capabilities of current approaches. In this paper, we develop a multi-agent TAMP framework for long horizon problems such as constructing a full-scale building. To this end we extend the Logic-Geometric Programming framework by sampling-based motion planning,a limited horizon approach, and a task-specific structural stability optimization that allow an effective decomposition of the task. We show that our framework is capable of constructing a large pavilion built from several hundred geometrically unique building elements from start to end autonomously.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا